Skip to main content
Log in

Bose—Einstein Condensation and Spin Superfluidity of Magnons in a Perpendicularly Magnetized Yttrium Iron Garnet Film

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The formation of a Bose—Einstein condensate of magnons in a perpendicularly magnetized iron yttrium garnet film under radio-frequency pumping in a stripline has been studied experimentally. The characteristics of the nonlinear magnetic resonance and spatial distribution of the Bose—Einstein condensate of magnons in the gradient of a magnetic field have been analyzed. In these experiments, the system of bosonic magnons behaves in much the same way as the Bose—Einstein condensate of magnons in antiferromagnetic superfluid 3He-B, which was previously studied in detail. The Bose—Einstein condensate of magnons forms a coherently precessing state having the properties of magnon superfluidity. Its stability is determined by the repulsion potential between excited magnons, which compensates the inhomogeneity of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Arute, K. Arya, R. Babbush, et al., Nature (London, U. K.) 574, 505 (2019).

    Article  ADS  Google Scholar 

  2. Yu. M. Bunkov, J. Exp. Theor. Phys. 131, 18 (2020).

    Article  ADS  Google Scholar 

  3. A. S. Borovik-Romanov, Yu. M. Bun’kov, V. V. Dmitriev, and Yu. M. Mukharskii, JETP Lett. 40, 1033 (1984).

    ADS  Google Scholar 

  4. I. A. Fomin, JETP Lett. 40, 1037 (1984).

    ADS  Google Scholar 

  5. A. C. Borovik-Romanov, Yu. M. Bun’kov, V. V. Dmitriev, Yu. M. Mukharskii, and K. Flakhbart, Sov. Phys. JETP 61, 1199 (1985).

    Google Scholar 

  6. G. E. Volovik, J. Low Temp. Phys. 153, 266 (2008).

    Article  ADS  Google Scholar 

  7. P. W. Anderson and H. Suhl, Phys. Rev. 100, 1788 (1955).

    Article  ADS  Google Scholar 

  8. Y. S. Gui, A. Wirthmann, and C. Hu, Phys. Rev. B 80, 184422 (2009).

    Article  ADS  Google Scholar 

  9. Yu. K. Fetisov, IEEE Trans. Magn. 35, 4511 (1999).

    Article  ADS  Google Scholar 

  10. T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

    Article  ADS  Google Scholar 

  11. Yu. M. Bunkov and V. L. Safonov, J. Magn. Magn. Mater. 452, 30 (2018).

    Article  ADS  Google Scholar 

  12. J. Rogel-Salazar, Eur. J. Phys. 34, 247 (2013).

    Article  Google Scholar 

  13. Yu. V. Gulyaev, P. E. Zilberman, A. G. Temiryazev, and M. P. Tikhomirova, Phys. Solid State 42, 1062 (2000).

    Article  Google Scholar 

  14. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskii, E. V. Poddyakova, and O. D. Timofeevskaya, Sov. Phys. JETP 69, 542 (1989).

    Google Scholar 

  15. Yu. M. Bunkov and G. E. Volovik, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson (Oxford Univ. Press, Oxford, 2013), Chap. 4.

  16. Yu. M. Bunkov, Appl. Magn. Reson. (2020). https://doi.org/10.1007/s00723-020-01223-z

  17. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, and D. A. Sergatskov, Phys. Rev. Lett. 62, 1631 (1989).

    Article  ADS  Google Scholar 

  18. Yu. M. Bunkov, A. V. Klochkov, T. R. Safin, K. R. Safiullin, and M. S. Tagirov, JETP Lett. 109, 43 (2019).

    Article  ADS  Google Scholar 

  19. Yu. M. Bunkov, A. Farhutdinov, A. N. Kuzmichev, T.R. Safin, P. M. Vetoshko, V. I. Belotelov, and M. S. Tagirov, arXiv: 1911.03708 (2019).

  20. Yu. M. Bun’kov, P. M. Vetoshko, A. N. Kuzmichev, G. V. Mamin, C. B. Orlinskii, T. R. Safin, V. I. Belotelov, and M. S. Tagirov, JETP Lett. 111, 62 (2020).

    Article  ADS  Google Scholar 

  21. Yu. M. Bunkov, S. N. Fisher, A. M. Guenault, and G. R. Pickett, Phys. Rev. Lett. 69, 3092 (1992).

    Article  ADS  Google Scholar 

  22. Yu. M. Bunkov and G. E. Volovik, Phys. Rev. Lett. 98, 265302 (2007).

    Article  ADS  Google Scholar 

  23. Yu. M. Bunkov, E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, V. V. Kuzmin, T. R. Safin, and M. S. Tagirov, JETP Lett. 94, 68 (2011).

    Article  ADS  Google Scholar 

  24. Yu. M. Bunkov, E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, V. V. Kuzmin, V. S. L’vov, and M. S. Tagirov, Phys. Rev. Lett. 108, 177002 (2012).

    Article  ADS  Google Scholar 

  25. M. S. Tagirov, E. M. Alakshin, Yu. M. Bunkov, R. R. Gazizulin, S. A. Zhurkov, L. I. Isaenko, A. V. Klochkov, A. M. Sabitova, T. R. Safin, and K. R. Safiullin, J. Low Temp. Phys. 175, 167 (2014).

    Article  ADS  Google Scholar 

  26. Yu. M. Bunkov, A. V. Klochkov, T. R. Safin, K. R. Safiullin, and M. S. Tagirov, JETP Lett. 106, 677 (2017).

    Article  ADS  Google Scholar 

  27. Yu. M. Bunkov, J. Magn. Magn. Mater. 310, 1476 (2007).

    Article  ADS  Google Scholar 

  28. Yu. M. Bunkov and G. E. Volovik, J. Low Temp. Phys. 150, 135 (2008).

    Article  ADS  Google Scholar 

  29. A. C. Borovik-Romanov, Yu. M. Bun’kov, V. V. Dmitriev, and Yu. M. Mukharskii, JETP Lett. 45, 124 (1987).

    ADS  Google Scholar 

  30. A. S. Borovik-Romanov, Yu. M. Bun’kov, A. de Vaard, V. V. Dmitriev, V. Makrotsieva, Yu. M. Mukharskii, and D. A. Sergatskov, JETP Lett. 47, 478 (1988).

    ADS  Google Scholar 

  31. Yu. M. Bunkov, SPIN 9, 1940005 (2019).

    Article  ADS  Google Scholar 

  32. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, and D. A. Sergatskov, Phys. B (Amsterdam, Neth.) 165, 649 (1990).

    ADS  Google Scholar 

  33. Yu. M. Bun’kov, V. V. Dmitriev, and Yu. M. Mukharskii, JETP Lett. 43, 168 (1986).

    ADS  Google Scholar 

  34. Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, Phys. B (Amsterdam, Neth.) 178, 196 (1992).

    Article  ADS  Google Scholar 

  35. M. Kupka and P. Skyba, Phys. Rev. B 85, 184529 (2012).

    Article  ADS  Google Scholar 

  36. P. Nowik-Boltyk, O. Dzyapko, V. E. Demidov, N. G. Berloff, and S. O. Demokritov, Sci. Rep. 2, 482 (2012).

    Article  ADS  Google Scholar 

  37. D. A. Bozhko, A. J. E. Kreil, H. Yu. Musiienko-Shmarova, A. A. Serga, A. Pomyalov, V. S. L’vov, and B. Hillebrands, Nat. Commun. 10, 2460 (2019).

    Article  ADS  Google Scholar 

  38. D. A. Bozhko, A. J. E. Kreil, H. Yu. Musiienko-Shmarova, A. A. Serga, A. Pomyalov, V. S. L’vov, and B. Hillebrands, Nat. Commun. 10, 2460 (2019).

    Article  ADS  Google Scholar 

  39. M. Schneider, T. Braacher, D. Breitbach, et al., Nat. Nanotechnol. (2020). https://doi.org/10.1038/s41565-020-0671-z

  40. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, JETP Lett. 39, 469 (1984).

    ADS  Google Scholar 

  41. Yu. M. Bun’kov, V. V. Dmitriev, and Yu. M. Mukharskii, Sov. Phys. JETP 61, 719 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Bunkov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 5, pp. 313–318.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Megaproject no. 075-15-2019-1934).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetoshko, P.M., Knyazev, G.A., Kuzmichev, A.N. et al. Bose—Einstein Condensation and Spin Superfluidity of Magnons in a Perpendicularly Magnetized Yttrium Iron Garnet Film. Jetp Lett. 112, 299–304 (2020). https://doi.org/10.1134/S0021364020170105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020170105

Navigation