Skip to main content
Log in

Role of Streamers in the Formation of a Corona Discharge in a Highly Nonuniform Electric Field

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The ignition of a corona discharge on a tip electrode with a small radius of curvature in air at atmospheric pressure is studied. It is established that the initiation of the corona discharge in a highly nonuniform electric field at any voltage polarity is due to the formation of ball streamers at high (≥10 kV/µs) and low (≤0.2 kV/ms) rates of the tension increase in the tip—plane gap. It is shown that the current amplitude through the gap of the first streamers at a positive tip electrode polarity is approximately half of that at a negative polarity, and the frequency of their appearance differs by two or more orders of magnitude. It is established that the high pulse repetition frequencies at the same voltage across the gap lead to higher average currents through the gap and a larger observed glowing area in the case of the negative polarity tip electrode in the formation region of ball streamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Loeb, Fundamental Processes of Electrical Discharge in Gases (Literary Licensing, 2013).

  2. V. N. Uzhov, Cleaning of Industrial Gases with Electrostatic Precipitators (Khimiya, Moscow, 1967) [in Russian].

    Google Scholar 

  3. V. V. Bazutkin, V. P. Larionov, and Yu. S. Pintal’, High-Voltage Engineering. Insulation and Overvoltages in Electrical Systems (Energoatomizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  4. S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, Tech. Phys. 53, 848 (2008).

    Article  Google Scholar 

  5. Yu. P. Raizer, Gas Discharge Physics, 3rd ed. (Intellekt, Moscow, 2009; Springer, Berlin, 1991).

    Google Scholar 

  6. E. I. Asinovskii, A. A. Petrov, and I. S. Samoylov, JETP Lett. 86, 302 (2007).

    Article  ADS  Google Scholar 

  7. Yu. S. Akishev, G. I. Aponin, M. E. Grushin, V. B. Karal’nik, M. V. Pan’kin, A. V. Petryakov, and N. I. Trushkin, Plasma Phys. Rep. 34, 312 (2008).

    Article  ADS  Google Scholar 

  8. G. V. Naidis, Phys. Rev. E 79, 057401 (2009).

    Article  ADS  Google Scholar 

  9. D. Z. Pai, D. A. Lacoste, and C. O. Laux, J. Appl. Phys. 107, 093303 (2010).

    Article  ADS  Google Scholar 

  10. T. Shao, V. F. Tarasenko, Ch. Zhang, I. D. Kostyrya, H. Jiang, R. Xu, D. V. Rybka, and P. Yan, Appl. Phys. Express 4, 0660 (2011).

    Article  Google Scholar 

  11. Z. Kexin, P. Yongjun, T. Miao, T. Jingfeng, W. Liqiu, and Z. Chaohai, J. Phys.: Conf. Ser. 652, 012016 (2015).

    Google Scholar 

  12. W. Shuqun, Ch. Wenxin, H. Guowang, W. Fei, L. Chang, L. Xueyuan, Zh. Chaohai, and L. Xinpei, Phys. Plasmas 25, 123507 (2018).

    Article  Google Scholar 

  13. V. F. Tarasenko, E. Kh. Baksht, E. A. Sosnin, A. G. Burachenko, V. A. Panarin and V. S. Skakun, Plasma Phys. Rep. 44, 520 (2018).

    Article  ADS  Google Scholar 

  14. G. W. Trichel, Phys. Rev. 54, 1078 (1938).

    Article  ADS  Google Scholar 

  15. P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, J. Phys. D: Appl. Phys. 42, 175202 (2009).

    Article  ADS  Google Scholar 

  16. D. V. Beloplotov, V. F. Tarasenko, D. A. Sorokin, and M. I. Lomaev, JETP Lett. 106, 653 (2017).

    Article  ADS  Google Scholar 

  17. D. V. Beloplotov, M. I. Lomaev, V. F. Tarasenko, and D. A. Sorokin, JETP Lett. 107, 606 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kuznetsov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 1, pp. 72–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Kuznetsov, V.S., Panarin, V.A. et al. Role of Streamers in the Formation of a Corona Discharge in a Highly Nonuniform Electric Field. Jetp Lett. 110, 85–89 (2019). https://doi.org/10.1134/S0021364019130137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019130137

Navigation