Skip to main content
Log in

Effect of the Temperature on the Redistribution of an Energy Flux Carried by Surface Waves along the Interface between Crystals with Different Mechanisms of Formation of a Nonlinear Response

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A model of an interface between a uniaxial crystal with the diffusion mechanism of formation of a nonlinear photorefractive effect and crystals with both focusing and defocusing Kerr nonlinearities has been considered. New types of transverse magnetic polarized nonlinear surface waves propagating along the interface between crystals have been revealed. These types of waves have different ranges of existence and different characters of damping of the field with increasing distance from the interface. Energy fluxes carried by such surface waves have been determined. It has been shown that, as the temperature of crystals near the interface is varied, the radiation power carried by nonlinear surface waves is redistributed between adjacent crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Petersen, A. Marrakchi, P. Buchhave, and P. E. Andersen, Ferroelectics 174, 149 (1995).

    Article  Google Scholar 

  2. E. Canoglu, C. M. Yang, and E. Garmire, Appl. Phys. Lett. 69, 316 (1996).

    Article  ADS  Google Scholar 

  3. S. J. Jensen, Spatial Structures and Temporal Dynamicsin Photorefractive Nonlinear Systems (Roskilde Denmark, 1999).

    Google Scholar 

  4. K. Buse, C. Denz, and W. Krolikowski, Appl Phys. B 95, 389 (2009).

    Article  ADS  Google Scholar 

  5. G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, Sens. Actuators, B 282, 391 (2019).

    Article  Google Scholar 

  6. D. Kip, Appl. Phys. B 67, 131 (1998).

    Article  ADS  Google Scholar 

  7. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Nauka, St. Petersburg, 1992; Springer. Berlin, 1991).

    Google Scholar 

  8. A. P. Vinogradov, S. G. Erokhin, A. B. Granovskii, and M. Inue, J. Commun. Technol. Electron. 49, 682 (2004).

    Google Scholar 

  9. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier. Amsterdam, 2012).

    MATH  Google Scholar 

  10. V. N. Belyi and N. A. Khilo, Tech. Phys. Lett. 23, 467 (1997).

    Article  ADS  Google Scholar 

  11. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, Phys. Rev. A 76, 013827 (2007).

    Article  ADS  Google Scholar 

  12. S. A. Chetkin and I. M. Akhmedzhanov, Quantum Electron. 41, 980 (2011).

    Article  ADS  Google Scholar 

  13. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogdaev, Qu a ntum Electron. 40, 437 (2010).

    Article  ADS  Google Scholar 

  14. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, and L. I. Ivleva, Quantum Electron. 41, 924 (2011).

    Article  ADS  Google Scholar 

  15. V. G. Besprozvannykh and V. P. Pervadchuk, Nonlinear Effects in Fiber Optics (Perm. Nats. Issled. Politekh. Univ., Perm', 2011) [in Russian].

    Google Scholar 

  16. G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Nonlinear Optical Crystals: Properties and Applications in Quantum Electronics (Radio Svyaz', Moscow, 1991) [in Russian].

    Google Scholar 

  17. O. V. Kobozev, S. M. Shandarov, R. V. Litvinov, Yu. F. Kargin, and V. V. Volkov, Phys. Solid State 40, 1844 (1998).

    Article  ADS  Google Scholar 

  18. U. A. Laudyn, K. A. Rutkowska, R. T. Rutkowski, M. A. Karpierz, T. R. Wolinski, and J. Wojcik, Cent. Eur. J. Phys. 6, 612 (2008).

    Google Scholar 

  19. V. V. Polyakov, K. P. Polyakova, V. A. Seredkin, and G. S. Patrin, Tech. Phys. Lett. 38, 921 (2012).

    Article  ADS  Google Scholar 

  20. O. V. Butov, K. M. Goliant, and A. L. Tomashuk, Quantum Electron. 30, 517 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 11, pp. 778–782.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Effect of the Temperature on the Redistribution of an Energy Flux Carried by Surface Waves along the Interface between Crystals with Different Mechanisms of Formation of a Nonlinear Response. Jetp Lett. 109, 744–748 (2019). https://doi.org/10.1134/S0021364019110146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019110146

Navigation