Skip to main content
Log in

Structure and Anisotropy of the Superconducting Order Parameter in Ba0.65K0.35Fe2As2 Probed by Andreev Spectroscopy

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The superconducting order parameters in optimally doped Ba0.65K0.35Fe2As2 single crystals have been directly measured using multiple Andreev reflection effect spectroscopy of superconductor–normal metal–superconductor break-junctions. We determine two superconducting gaps, which are nodeless in the k x k y -plane of the momentum space, and resolve a substantial in-plane anisotropy of the large gap. The temperature dependences of the gaps indicate a strong coupling within the bands where ΔL develops, a weak coupling in the condensate with the small gap ΔS, and a moderate interband interaction between the two condensates. The own critical temperatures of both condensates have been estimated (under the hypotherical assumption of zero interband interaction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Evtushinsky, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, T. K. Kim, B. Büchner, H. Luo, Z. Wang, H.-H. Wen, G. Sun, C. Lin, and S. V. Borisenko, J. Phys. Soc. Jpn. 80, 023710 (2011).

    Article  ADS  Google Scholar 

  2. D. V. Evtushinsky, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, T. K. Kim, B. Büchner, H. Luo, Z. Wang, H.-H. Wen, G. Sun, C. Lin, and S. V. Borisenko, New J. Phys. 11, 055069 (2009).

    Article  ADS  Google Scholar 

  3. P. J. Hirschfeld, C.R. Phys. 17, 197 (2016).

    Article  ADS  Google Scholar 

  4. T. Saito, S. Onari, and H. Kontani, Phys. Rev. B 88, 045115 (2013).

    Article  ADS  Google Scholar 

  5. A. Bianconi, Nat. Phys. 9, 536 (2013).

    Article  MathSciNet  Google Scholar 

  6. E. van Heumen, J. Vuorinen, K. Koepernik, F. Massee, Y. Huang, M. Shi, J. Klei, J. Goedkoop, M. Lindroos, J. van den Brink, and M. S. Golden, Phys. Rev. Lett. 106, 027002 (2011).

    Article  ADS  Google Scholar 

  7. P. Richard, T. Qian, and H. Ding, J. Phys.: Condens. Matter 27, 293203 (2015).

    Google Scholar 

  8. T. E. Kuzmicheva, V. M. Pudalov, S. A. Kuzmichev, A.V. Sadakov, Yu. A. Aleshenko, V. A. Vlasenko, V. P. Martovitsky, K. S. Pervakov, Yu. F. Eltsev, and V. M. Pudalov, Phys. Usp. 60, 419 (2017).

    Article  ADS  Google Scholar 

  9. H. Q. Luo, Z. S. Wang, H. Yang, P. Cheng, X. Y. Zhu, and H. H. Wen, Supercond. Sci. Technol. 21, 125014 (2008).

    Article  ADS  Google Scholar 

  10. S. Johnston, M. Abdel-Hafiez, L. Harnagea, V. Grinenko, D. Bombor, Y. Krupskaya, C. Hess, S. Wurmehl, A. U. B. Wolter, B. Büchner, H. Rosner, and S.-L. Drechsler, Phys. Rev. B 89, 134507 (2014).

    Article  ADS  Google Scholar 

  11. Yu. V. Sharvin and V. F. Gantmakher, Sov. Phys. JETP 38, 604 (1974).

    ADS  Google Scholar 

  12. M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B 27, 6739 (1983).

    Article  ADS  Google Scholar 

  13. G. B. Arnold, J. Low Temp. Phys. 68, 1 (1987).

    Article  ADS  Google Scholar 

  14. D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831(1995).

    Article  ADS  Google Scholar 

  15. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).

    Article  ADS  Google Scholar 

  16. T. P. Devereaux and P. Fulde, Phys. Rev. B 47, 14638 (1993).

    Article  ADS  Google Scholar 

  17. M. Abdel-Hafiez, P. J. Pereira, S. A. Kuzmichev, T. E. Kuzmicheva, V. M. Pudalov, L. Harnagea, A. A. Kordyuk, A. V. Silhanek, V. V. Moshchalkov, B. Shen, H. H. Wen, A. N. Vasiliev, and X. J. Chen, Phys. Rev. B 90, 054524 (2014).

    Article  ADS  Google Scholar 

  18. S. A. Kuzmichev and T. E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016).

    Article  ADS  Google Scholar 

  19. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).

    Article  ADS  Google Scholar 

  20. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, V. M. Pudalov, and N. D. Zhigadlo, Phys. Rev. B 95, 094507 (2017).

    Article  ADS  Google Scholar 

  21. T. E. Kuzmicheva, S. A. Kuzmichev, M. G. Mikheev, Ya. G. Ponomarev, S. N. Tchesnokov, Yu. F. Eltsev, V. M. Pudalov, K. S. Pervakov, A. V. Sadakov, A. S. Usoltsev, E. P. Khlybov, and L. F. Kulikova, Eur. Phys. Lett. 102, 67006 (2013).

    Article  ADS  Google Scholar 

  22. C. Ren, Z. S. Wang, H. Q. Luo, H. Yang, L. Shan, and H. H. Wen, Physica C 469, 599 (2009).

    Article  ADS  Google Scholar 

  23. T. E. Kuzmicheva, V. A. Vlasenko, S. Yu. Gavrilkin, S. A. Kuzmichev, K. S. Pervakov, I. V. Roshchina, and V. M. Pudalov, J. Supercond. Novel Magn. 29, 3059 (2016).

    Article  Google Scholar 

  24. V. A. Moskalenko, Fiz. Met. Metall. 8, 522 (1959).

    Google Scholar 

  25. V. A. Moskalenko, Sov. Phys. Usp. 17, 450 (1974).

    Article  ADS  Google Scholar 

  26. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    Article  ADS  Google Scholar 

  27. S. A. Kuzmichev, T. E. Kuzmicheva, and S. N. Tchesnokov, JETP Lett. 99, 295 (2014).

    Article  ADS  Google Scholar 

  28. S. A. Kuzmichev, T. E. Kuzmicheva, S. N. Tchesnokov, V. M. Pudalov, and A. N. Vasiliev, J. Supercond. Novel Magn. 29, 1111 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuzmicheva.

Additional information

Original Russian Text © T.E. Kuzmicheva, S.A. Kuzmichev, A.A. Kordyuk, V.M. Pudalov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 1, pp. 47–53.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmicheva, T.E., Kuzmichev, S.A., Kordyuk, A.A. et al. Structure and Anisotropy of the Superconducting Order Parameter in Ba0.65K0.35Fe2As2 Probed by Andreev Spectroscopy. Jetp Lett. 107, 42–47 (2018). https://doi.org/10.1134/S002136401801006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401801006X

Navigation