Skip to main content
Log in

Nonreciprocal propagation of hybrid electromagnetic waves in a layered ferrite–ferroelectric structure with a finite width

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Effects of the nonreciprocal propagation of electromagnetic waves in a transversally limited ferrite–ferroelectric structure with a finite width and tangential magnetization have been considered. Nonreciprocal effects are manifested in the range of frequencies corresponding to the hybridization of electromagnetic waves of the ferrite and ferroelectric waveguides. The electrodynamic characteristics of waves propagating in the layered structure with a finite width in different directions have been calculated by the finite element method. The nonreciprocity factors have been calculated for transverse waveguide modes. It has been shown that nonreciprocity owing to the gyrotropy of the ferrite waveguide leads to a change in the spatial distribution of the components of electromagnetic fields in the layered structure and to the redistribution of the power transferred by an electromagnetic wave between the layers of the structure. The results obtained can be used to create nonreciprocal microwave microdevices with double control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Ozgur, Y. Alivov, and H. Morkoc, J. Mater. Sci.: Mater. Electron. 20,911(2009).

    Google Scholar 

  2. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55,557(2012).

    Article  ADS  Google Scholar 

  3. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  4. R. E. Camley, Surf. Sci. Rep. 7,103(1987).

    Article  ADS  Google Scholar 

  5. T. Ochiai, Sci. Technol. Adv. Mater. 16,014401(2015).

    Article  Google Scholar 

  6. M. Jamali, J. H. Kwon, S. M. Seo, K. J. Lee, and H. Yang, Sci. Rep. 3,3160(2013).

    Article  ADS  Google Scholar 

  7. S. A. Nikitov, Ph. Tailhades, and C. S. Tsai, J. Magn. Magn. Mater. 236,320(2001).

    Article  ADS  Google Scholar 

  8. A. V. Sadovnikov, A. G. Rozhnev, and S. E. Sheshukova, Geteromagn. Mikroelektron. 13,102(2012).

    Google Scholar 

  9. S. L. Vysotskii, E. N. Beginin, S. A. Nikitov, E. S. Pavlov, and Yu. A. Filimonov, Tech. Phys. Lett. 37,1024(2011).

    Article  ADS  Google Scholar 

  10. E. N. Beginin, Yu. A. Filimonov, E. S. Pavlov, S. L. Vysotskii, and S. A. Nikitov, Appl. Phys. Lett. 100,252412(2012).

    Article  ADS  Google Scholar 

  11. V. B. Anfinogenov, T. N. Verbitskaya, P. E. Zilberman, G. T. Kazakov, and V. V. Tikhonov, Sov. Tech. Phys. Lett. 12,185(1986).

    Google Scholar 

  12. A. B. Ustinov and B. A. Kalinikos, Tech. Phys. Lett. 40,568(2014).

    Article  ADS  Google Scholar 

  13. T. W. O’Keffe and R. W. Patterson, J. Appl. Phys. 49,4886(1973).

    Article  Google Scholar 

  14. E. N. Beginin, A. V. Sadovnikov, Yu. P. Sharaevsky, and S. A. Nikitov, Solid State Phenom. 215,389(2014).

    Article  Google Scholar 

  15. Y. Long and M. Koshiba, IEEE Trans. 37,680(1989).

    Google Scholar 

  16. A. V. Sadovnikov, C. S. Davies, S. V. Grishin, V. V. Kruglyak, D. V. Romanenko, Yu. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 106,192406(2015).

    Article  ADS  Google Scholar 

  17. V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, and S. O. Demokritov, Appl. Phys. Lett. 106,022403(2015).

    Article  ADS  Google Scholar 

  18. A. V. Sadovnikov and K. V. Bublikov, J. Phys.: Conf. Ser. 572,012064(2014).

    ADS  Google Scholar 

  19. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers (Cambridge Univ. Press, Cambridge, 1983; Mir, Moscow, 1986).

    MATH  Google Scholar 

  20. I. V. Vasil’ev and S. I. Kovalev, IEEE Trans. 42,1238(1994).

    Google Scholar 

  21. A. V. Sadovnikov, K. V. Bublikov, E. N. Beginin, and S. A. Nikitov, J. Commun. Technol. Electron. 59,914(2014).

    Article  Google Scholar 

  22. V. E. Demidov and B. A. Kalinikos, Tech. Phys. Lett. 26,272(2000).

    Article  ADS  Google Scholar 

  23. T. N. Verbitskaya, Varactors (Gos. Energet. Izdat., Moscow, Leningrad, 1958).

    Google Scholar 

  24. R. W. Damon and J. R. Eshbach, J. Phys. Chem. Sol. 19,308(1961).

    Article  ADS  Google Scholar 

  25. S. N. Bajpai, J. Appl. Phys. 52,910(1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sadovnikov.

Additional information

Original Russian Text © A.V. Sadovnikov, K.V. Bublikov, E.N. Beginin, S.E. Sheshukova, Yu.P. Sharaevskii, S.A. Nikitov, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheckoi Fiziki, 2015, Vol. 102, No. 3, pp. 167–172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, A.V., Bublikov, K.V., Beginin, E.N. et al. Nonreciprocal propagation of hybrid electromagnetic waves in a layered ferrite–ferroelectric structure with a finite width. Jetp Lett. 102, 142–147 (2015). https://doi.org/10.1134/S0021364015150102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015150102

Keywords

Navigation