Skip to main content
Log in

Nondestructive Elemental Diagnostics of the Fuel-Rod Cladding Surface by the Ion-Beam and X-Ray Analytical Methods

  • NUCLEAR EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The characteristics of the production technology for fuel rod cladding oriented to its application for water-moderated water-cooled power reactors with a coolant temperature of 300−350°C are presented. Possible directions for the modification of the cladding surface are proposed. The methodological background for the diagnostics of materials based on the ion-beam and X-ray diagnostic methods is discussed. Using this diagnostics, it is possible to characterize the parameters of the inner and outer surfaces of the fuel-rod cladding without changing its form. Experimental data are presented, which demonstrate the efficiency of the proposed analytical complex for characterizing the surface layers of fuel-rod cladding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Beskorovainyi, N.N., Kalin, B.A., Platonov, P.A., and Chernov, I.I., Konstruktsionnye materialy yadernykh reaktorov (Structural Materials for Nuclear Reactors), Moscow: Energoatomizdat, 1995.

  2. Zaimovskii, A.S., Nikulina, A.V., and Reshetnikov, F.G., Tsirkonievye splavy v atomnoi energetike (Zirconium Alloys for Nuclear Power Engineering), Moscow: Energoatomizdat, 1994.

  3. Razrabotka, proizvodstvo i ekspluatatsiya teplovydelyayushchikh elementov energeticheskikh reaktorov (Development, Manufacturing, and Operational Process for Heat Emitting Elements of Power Reactors), Reshetnikov, F.G., Ed., Moscow: Energoatomizdat, 1995, book 1.

  4. Wu, A., Ribis, J., Brachet, J.C., Clouet, E., Lepretre, F., Bordas, E., and Arnal, B., J. Nucl. Mater., 2018, vol. 504, p. 289. https://doi.org/10.1016/j.jnucmat.2018.01.029

    Article  ADS  Google Scholar 

  5. Matveev, A.V., Belykh, T.A., Perekhozhev, V.I., Sinel’nikov, L.P., Kruzhalov, A.V., Neshov, F.G., and Trifanov, A.G., RF Patent 2199607, Byull. Izobret., 2003, no. 6.

  6. Ivanova, S.V., Glagovskii, E.M., Khazov, I.A., Orlov, V.K., Shlepov, I.A., Nikitin, K.N., Dubrovskii, Yu.V., and Denisov, E.A., Fiz. Khim. Obrab. Mater., 2009, no. 3, p. 5.

  7. Woodruff, D.P. and Delchar, T.A., Modern Techniques of Surface Science (Cambridge Solid State Science Series), Cambridge: Cambridge Univ. Press, 1986.

    Google Scholar 

  8. Potapov, A.I. and Syas’ko, V.A., Nerazrushayushchie metody i sredstva kontrolya tolshchiny pokrytii i izdelii (Nondestructive Methods and Means for Testing the Thickness of Coatings and Devices), St. Petersburg: Gumanistka, 2009.

  9. Feldman, L.C. and Mayer, J.W., Fundamentals of Surface and Thin Film Analysis, Amsterdam: North Holland, Elsevier Science Publ., 1986.

    Google Scholar 

  10. Schmidt, B. and Wetzig, K., Ion Beams in Material Processing and Analysis, Wein: Springer, 2013.

    Book  Google Scholar 

  11. Birkholz, M., Thin Film Analysis by X-Ray Scattering, Weinheim: Wiley-VCH, 2006.

  12. X-Ray Spectrometry, Recent Technological Advances, Tsuji, K., Injuk, J., and Van Grieken, R., Eds., New York: Wiley, 2004.

  13. Egorov, V.K., Egorov, E.V., and Afanas’ev, M.S., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2013, vol. 7, no. 4, p. 640.

    Article  Google Scholar 

  14. Egorov, V.K. and Egorov, E.V., NBIKS-Nauka. Tekhnol., 2019, vol. 3, no. 7, p. 29.

    Google Scholar 

  15. Egorov, V., Egorov, E., and Afanas’ev, M., J. Phys.: Conf. Ser., 2017, vol. 808, no. 1, p. 012002. https://doi.org/10.1088/1742-6596/808/1/012002

    Article  Google Scholar 

  16. Doolittle, L.R., Nucl. Instrum. Methods, 1985, vol. 9, p. 344.

    Article  Google Scholar 

  17. Klockenkamper, R. and von Bohlen, A., Total X-ray Fluorescence Analysis and Related Methods, New York: Wiley, 2015.

    Google Scholar 

  18. Bykov, V.A., Egorov, V.K., and Egorov, E.V., RF Patent 2486626, Byull. Izobret., 2013, no. 18.

  19. Kuprin, A.S., Belous, V.A., Bryk, V.V., Vasilenko, R.L., Voevodin, V.N., Ovcharenko, V.D., Tolmacheva, G.N., Kolodii, I.V., Lunev, V.M., and Klimenko, I.O., Vopr. At. Nauki Tekh., 2015, no. 2 (96), p. 111.

  20. Johanson, S.A., Campbell, J.L., and Malquist, K.G., Principles Particle Induced X-Ray Emission Spectrometry (PIXE), New York: Wiley, 1995.

    Google Scholar 

  21. Diagrammy sostoyaniya dvoinykh metallicheskikh system. Spravochnik (State Diagrams of Binary Metal Systems. Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1997, vol. 2.

    Google Scholar 

  22. Hofsas, H., Forward Recoil Spectrometry, New York: Plenum, 1996.

    Google Scholar 

  23. Egorov, V.K., Egorov, E.V., and Afanas’ev, M.S., Bull. Rus. Acad. Sci.: Phys., 2014, vol. 78, no. 6, p. 498.

    Google Scholar 

Download references

Funding

The work was carried out in frame of state task 075-00475-19-00 and with the partial financial support of RFBR grants No. 19-07-00271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Egorov.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, V.K., Egorov, E.V., Kalin, B.A. et al. Nondestructive Elemental Diagnostics of the Fuel-Rod Cladding Surface by the Ion-Beam and X-Ray Analytical Methods. Instrum Exp Tech 64, 63–70 (2021). https://doi.org/10.1134/S0020441221010085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221010085

Navigation