Skip to main content
Log in

Effect of Barothermal Processing on the Solid-State Formation of the Structure and Properties of 16 at % Si–Al Hypereutectic Alloy

  • Published:
Inorganic Materials Aims and scope

Abstract

We describe barothermal processing (hot isostatic pressing) of a 16 at % Si–Al binary alloy for 3 h at a temperature of 560°C and pressure of 100 MPa for 3 h, in combination with measurements of heat effects during cooling. The results demonstrate that this processing leads to the fragmentation of the silicon structural constituent and ensures a high degree of homogenization of the as-prepared alloy. Heat treatment of the 16 at % Si–Al alloy at 560°C and a pressure of 100 MPa leads to a thermodynamically driven enhanced silicon dissolution, up to ~10 at %, in the aluminum matrix, resulting in the formation of a supersaturated solid solution, which subsequently decomposes during cooling. We analyze the complete porosity elimination process, which makes it possible to obtain a material with 100% relative density. According to differential barothermal analysis, microstructural analysis, and scanning and transmission electron microscopy data, barothermal processing of the 16 at % Si–Al alloy produces a bimodal size distribution of the silicon phase constituent: microparticles 3.6 μm in average size and nanoparticles down to ~1 nm in diameter. The Al matrix has been shown to contain a high density of edge dislocations. Barothermal processing reduces the thermal expansion coefficient and microhardness of the hypereutectic alloy. We conclude that solid-state barothermal processing is an effective tool for completely eliminating microporosity from the 16 at % Si–Al alloy, reaching a high degree of homogenization, and controlling the microstructure of the alloy, in particular by producing high dislocation density in the aluminum matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, J.L. and McAlister, A.J., The Al–Si (aluminum–silicon) system, Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 74–84.

    Article  CAS  Google Scholar 

  2. Hansen, M. and Anderko, K., Constitution of Binary Alloys, New York: McGraw-Hill, 1958, 2nd ed., vols. 1–2.

  3. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase Diagrams of Binary Metallic Systems), 3 vols., Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, 1997, 2001.

  4. Aluminum and Its Alloys. Effect of Silicon on Silumins. http://cdn-as3.myvirtualpaper.com/s/soedinitel/aliegosplavy/ 2011053101/upload/aliegosplavy.pdf.

  5. Ceschini, L., Morri, A., and Sambogna, G., The effect of hot isostatic pressing on the fatigue behavior of sandcast A356-T6 and A204-T6 aluminum alloys, J. Mater. Process. Technol., 2008, vol. 204, pp. 231–238.

    Article  CAS  Google Scholar 

  6. Chama, C.C., Distribution of Al 332 12Fe3Si and (FeAl6)Si in a hiped Al–10.71 wt% Si casting, Mater. Character., 1996, vol. 37, no. 4, pp. 177–181.

    Article  CAS  Google Scholar 

  7. Bouvard, D. and Ouedraogo, E., Modeling of hot isostatic pressing: a new formulation using random variables, Acta Metall., 1987, vol. 35, no. 7, pp. 2323–2328.

    Article  CAS  Google Scholar 

  8. Li, E.K.H. and Funkenbusch, P.D., Modeling of the densification rates of monosized and bimodal-sized particle systems during hot isostatic pressing (HIP), Acta Metall., 1989, vol. 37, no. 6, pp. 1645–1655.

    Article  CAS  Google Scholar 

  9. Nair, S.V. and Tien, J.K., Densification mechanism map for hot isostatic pressing (HIP) of unequal sized particles, Metall. Trans. A, 1987, vol. 18, pp. 97–107.

    Article  Google Scholar 

  10. Li, W.-B., Ashby, M.F., and Easterling, K.E., On densification and shape change during hot isostatic pressing, Acta Metall., 1987, vol. 35, no. 12, pp. 2831–2842.

    Article  CAS  Google Scholar 

  11. Wadley, H.N.G., Schaefer, R.J., Kahn, A.H., Ashby, M.F., Clough, R.B., Geffen, Y., and Wlassich, J.J., Sensing and modeling of the hot isostatic pressing of copper pressing, Acta Metall. Mater., 1991, vol. 39, no. 5, pp. 979–986.

    Article  CAS  Google Scholar 

  12. Shrinivasan, R. and Weiss, I., Formation of surface depressions during hot isostatic pressing (HIP), Scr. Metall. Mater., 1990, vol. 24, pp. 2413–2418.

    Article  Google Scholar 

  13. Zulfia, A., Atkinson, H.V., Jones, H., and King, S., Effect of hot isostatic pressing on cast A357 aluminum alloy with and without SiC particle reinforcement, J. Mater. Sci., 1999, vol. 34, pp. 4305–4310.

    Article  CAS  Google Scholar 

  14. Saltykov, S.A., Stereometricheskaya metallografiya (Stereometric Metallography), Moscow: Metallurgiya, 1976.

    Google Scholar 

  15. Dedyaeva, E.V., Akopyan, T.K., Padalko, A.G., and Fedotov, V.T., Barothermal analysis of the phase transformations and structure of Al–16 at % Si hypereutectic alloy, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Met., 2014, no. 7, pp. 76–79.

    Google Scholar 

  16. Schumacher, P., Reich, M., Mohles, V., Pogatscher, S., Uggowitzer, P.J., and Milkereit, B., Correlation between supersaturation of solid solution and mechanical behaviour of two binary Al–Si alloys, Mater. Sci. Forum, 2014, vols. 794–796, pp. 508–514.

    Article  Google Scholar 

  17. Fujikava, S.-I., Hirano, K.-I., and Fukushima, Y., Diffusion of silicon in aluminum, Metall. Trans. A, 1978, vol. 9, pp. 1811–1815.

    Article  Google Scholar 

  18. Beresnev, A.G., Razumovskii, I.M., Marinin, S.F., Tikhonov, A.A., and Butrim, V.N., Technological principles underlying the hot isostatic pressing of monocrystalline blades from high-temperature nickel alloys for aero engines, Tsvetn. Met., 2011, no. 12, pp. 84–88.

    Google Scholar 

  19. Dedyaeva, E.V., Nikiforov, P.N., Padalko, A.G., Talanova, G.V., and Shvorneva, L.I., Effect of barothermal processing on the microstructure and properties of Al–10 at % Si hypoeutectic binary alloy, Inorg. Mater., 2016, vol. 52, no. 7, pp. 721–728.

    Article  CAS  Google Scholar 

  20. Mii, H., Senoo, M., and Fujishiro, I., Solid solubility of Si in Al under high pressure, Jpn. J. Appl. Phys., 1976, vol. 15, pp. 777–783.

    Article  CAS  Google Scholar 

  21. Belov, N.A., Fazovyi sostav promyshlennykh i perspektivnykh alyuminievykh splavov (Phase Composition of Commercially Available and Promising Aluminum Alloys), Moscow: Izd. Dom Mosk. Inst. Stali i Splavov, 2010.

    Google Scholar 

  22. Shamsuzzoha, M. and Hogan, L.M., The twinned growth of silicon in chill-modified Al–Si eutectic, J. Cryst. Growth, 1987, vol. 82, pp. 598–610.

    Article  CAS  Google Scholar 

  23. Mortsell, E., Andersen, S., Marioara, C., Royset, J., Friis, J., and Holmestad, R., Characterization of multicomponent Al alloys by TEM, HAADF-STEM, EELS, Proc. 16th Eur. Microscopy Congr., Lyon, 2016, pp. 209–210.

    Google Scholar 

  24. Physical Metallurgy, Cahn, R.W., Ed., Amsterdam: North-Holland, 1965.

  25. Zhilyaev, A.P., Gálvez, F., Sharafutdinov, A., and Pérez-Prado, M.T., Influence of the high pressure torsion die geometry on the allotropic phase transformations in pure Zr, Mater. Sci. Eng., A, 2010, vol. 527, pp. 3918–3928.

    Article  Google Scholar 

  26. Hidnert, P. and Krider, H.S., Thermal expansion of aluminum and some aluminum alloys, J. Res. Natl. Bur. Stand., 1952, vol. 48, no. 3, pp. 209–220.

    Article  CAS  Google Scholar 

  27. Prigunova, A.G., Belov, N.A., Taran, Yu.N., Zolotorevskii, V.S., Napalkov, V.I., and Petrov, S.S., Siluminy. Atlas mikrostruktur i fraktogramm promyshlennykh splavov (Silumins: Atlas of Microstructures and Fracture Surface Maps for Industrial Alloys), Moscow: Mosk. Inst. Stali i Splavov, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Padalko.

Additional information

Original Russian Text © E.V. Dedyaeva, D.V. Zaitsev, E.A. Lukina, P.N. Nikiforov, A.G. Padalko, G.V. Talanova, K.A. Solntsev, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 2, pp. 138–145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedyaeva, E.V., Zaitsev, D.V., Lukina, E.A. et al. Effect of Barothermal Processing on the Solid-State Formation of the Structure and Properties of 16 at % Si–Al Hypereutectic Alloy. Inorg Mater 54, 125–132 (2018). https://doi.org/10.1134/S0020168518020024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518020024

Keywords

Navigation