Skip to main content
Log in

Microhardness and fracture toughness of ZrO2–Sc2O3 solid electrolyte, doped with rare-earth and transition metals

  • Published:
Inorganic Materials Aims and scope

Abstract

The influence of low concentrations (1 mol %) of co-dopants (Y, Ce, Gd, Er, La, Zn, Mn, Co and Cu) on the microhardness and fracture toughness of Zr0.81Sc0.19O2–δ (10.5ScSZ) solid electrolyte was studied by the indentation method. It was shown that co-doping of 10.5ScSZ by the rare-earth elements (Y, Ce, Gd, Er) results in microhardness increase on 4–45% due to stabilization of cubic phase in the grains, while the microhardness changing upon transition metals (Mn, Cu, Co, Zn) introduction is caused by the grain boundaries modification. The microhardness decreases on ~4 and 10% upon doping by Mn and Cu, accordingly, whereas the introduction of Co and Zn results in its increase approximately by 2 times. It was shown also that the influence of all investigated dopants on the fracture toughness is insignificant. The maximal effect observed for Cu was the fracture toughness increase from 2.1 up to 2.6 MPa m0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fergus, J.W., Electrolytes for solid oxide fuel cells, J. Power Sources, 2006, vol. 162, pp. 30–40.

    Article  CAS  Google Scholar 

  2. Badwal, S.P.S., Ciacchi, F.T., and Milosevic, D., Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation, Solid State Ionics, 2000, vols. 136–137, pp. 91–99.

    Article  Google Scholar 

  3. Lee, D.-S., Kim, W.S., Choi, S.H., et al., Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs, Solid State Ionics, 2005, vol. 176, pp. 33–39.

    Article  CAS  Google Scholar 

  4. Kondoh, J., Tomii, Y., and Kawachi, K., Changes in aging behavior and defect structure of yttria-fully-stabilized ZrO2 with Sc2O3 doping, J. Am. Ceram. Soc., 2003, vol. 86, pp. 2093–2102.

    Article  CAS  Google Scholar 

  5. Spirin, A., Ivanov, V., Nikonov, A., Lipilin, A., et al., Scandia-stabilized zirconia doped with yttria: synthesis, properties, and ageing behavior, Solid State Ionics, 2012, vol. 225, pp. 448–452.

    Article  CAS  Google Scholar 

  6. Abbas, H.A., Argirusis, C., Kilo, M., Wiemhofer, H.D., et al., Preparation and conductivity of ternary scandiastabilised zirconia, Solid State Ionics, 2011, vol. 184, pp. 6–9.

    Article  CAS  Google Scholar 

  7. Omar, S., Najib, W.B., Chen, W., and Bonanos, N., Electrical conductivity of 10 mol% Sc2O3–1 mol % M2O3–ZrO2 ceramics, J. Am. Ceram. Soc., 2012, vol. 95, pp. 1965–1972.

    Article  CAS  Google Scholar 

  8. Nikonov, A.V., Khrustov, V.R., Bokov, A.A., Koleukh, D.S., and Zayats, S.V., Co-doping effect on the properties of scandia-stabilized ZrO2, Russ. J. Electrochem., 2014, vol. 50, no. 7, pp. 625–629.

    Article  CAS  Google Scholar 

  9. Guo, C.X., Wang, J.X., He, C.R., and Wang, W.G., Effect of alumina on the properties of ceria and scandia co-doped zirconia for electrolyte-supported SOFC, Ceram. Int., 2013, vol. 39, pp. 9575–9582.

    Article  CAS  Google Scholar 

  10. Orlovskaya, N., Lukich, S., Subhash, G., Graule, T., and Kuebler, J., Mechanical properties of 10 mol % Sc2O3–1 mol % CeO2–89 mol % ZrO2 ceramics, J. Power Sources, 2010, vol. 195, pp. 2774–2781.

    Article  CAS  Google Scholar 

  11. Osipov, V.V., Kotov, Yu.A., Ivanov, M.G., Samatov, O.M., et al., Laser synthesis of nanopowders, Laser Phys., 2006, vol. 16, pp. 116–125.

    Article  CAS  Google Scholar 

  12. Nicholas, J.D. and De Jonghe, L.C., Prediction and evaluation of sintering aids for cerium gadolinium oxide, Solid State Ionics, 2007, vol. 178, pp. 1187–1194.

    Article  CAS  Google Scholar 

  13. Flegler, A.J., Burye, T.E., Yang, Q., and Nicholas, J.D., Cubic yttria stabilized zirconia sintering additive impacts: a comparative study, Ceram. Int., 2014, vol. 40, pp. 16323–16335.

    Article  CAS  Google Scholar 

  14. Nikonov, A.V., Spirin, A.V., Khrustov, V.R., Paranin, S.N., et al., Synthesis and properties of solid electrolyte Ce0.9Gd0.1O2–δ with Co, Cu, Mn, Zn doping, Inorg. Mater., 2016, vol. 52, no. 7, pp. 708–715.

    Article  CAS  Google Scholar 

  15. Lei, Z. and Zhu, Q., Low temperature processing of dense nanocrystalline scandia-doped zirconia (ScSZ) ceramics, Solid State Ionics, 2005, vol. 176, pp. 2791–2797.

    Article  CAS  Google Scholar 

  16. Sheu, T.-S., Xu, J., and Tien, T.Y., Phase relationships in the ZrO2–Sc2O3 and ZrO2–In2O3 systems, J. Am. Ceram. Soc., 1993, vol. 76, pp. 2027–2032.

    Article  CAS  Google Scholar 

  17. Yuan, F., Wang, J., Miao, H., Guo, C., and Wang, W.G., Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3)x–(Sc2O3)(0.11–x)–(ZrO2)0.89 (x = 0–0.11), J. Alloys Compd., 2013, vol. 549, pp. 200–205.

    Article  CAS  Google Scholar 

  18. Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., Electrical properties of transition-metal-doped YSZ, Solid State Ionics, 1992, vols. 53–56, pp. 418–425.

    Article  Google Scholar 

  19. Hartmanova, M., Poulsen, F.W., Hanic, F., et al., Influence of copper-and iron-doping on cubic yttriastabilized zirconia, J. Mater. Sci., 1994, vol. 29, pp. 2152–2158.

    Article  CAS  Google Scholar 

  20. Seidensticker, J.R. and Mayo, M.J., Thermal analysis of 3-mol %-yttria-stabilized tetragonal zirconia powder doped with copper oxide, J. Am. Ceram. Soc., 1996, vol. 79, pp. 401–406.

    Article  CAS  Google Scholar 

  21. Laguna-Bercero, M.A., Larrea, A., Pena, J.I., Merino, R.I., and Orera, V.M., Structured porous Ni-and Co-YSZ cermets fabricated from directionally solidified eutectic composites, J. Eur. Ceram. Soc., 2005, vol. 25, pp. 1455–1462.

    Article  CAS  Google Scholar 

  22. Silva, G.C.T. and Muccillo, E.N.S., Effect of Co addition on sintering and electrical properties of yttria-stabilized zirconia, Mater. Sci. Forum, 2008, vols. 591–593, pp. 397–401.

    Article  Google Scholar 

  23. Pastor, M., Prasad, A., Biswas, K., Pandey, A.C., and Manna, I., Microstructural and impedance study of nanocrystalline lanthana-doped scandia-stabilized zirconia, J. Nanopart. Res., 2012, vol. 14, paper 1031.

    Article  Google Scholar 

  24. Ran, S., Winnubst, L., Blank, D.H.A., Pasaribu, H.R., et al., Effect of microstructure on the tribological and mechanical properties of CuO-doped 3Y-TZP ceramics, J. Am. Ceram. Soc., 2007, vol. 90, pp. 2747–2752.

    Article  CAS  Google Scholar 

  25. Aktas, B., Microstructure, mechanical and electrical properties of CuO doped 8YSZ, High Temp. Mater. Processes, 2013, vol. 32, pp. 551–556.

    Article  CAS  Google Scholar 

  26. Samsonov G.V., Borisova A.L., Zhidkova T.G., Znatokova T.N., et al., Fiziko-khimicheskie svoistva okislov. Spravochnik (Physicochemical Properties of Oxides: A Handbook), Moscow: Metallurgiya, 1978.

    Google Scholar 

  27. Ramesh, S., Chew, W.J.K., Tan, C.Y., Purbolaksono, J., et al., Influence of manganese on the sintering properties of tetragonal zirconia, Ceram.–Silik., 2013, vol. 57, pp. 28–32.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nikonov.

Additional information

The article was translated by the authors.

Original Russian Text © A.V. Nikonov, A.S. Kaygorodov, K.A. Kuterbekov, K.Zh. Bekmyrza, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 9, pp. 957–962.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, A.V., Kaygorodov, A.S., Kuterbekov, K.A. et al. Microhardness and fracture toughness of ZrO2–Sc2O3 solid electrolyte, doped with rare-earth and transition metals. Inorg Mater 53, 937–943 (2017). https://doi.org/10.1134/S002016851709014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851709014X

Keywords

Navigation