Skip to main content
Log in

High-temperature heat capacity of the oxide compounds in the Bi2O3–V2O5 system

  • Published:
Inorganic Materials Aims and scope

Abstract

The compounds BiVO4, Bi4V2O11, and Bi12V2O23 have been prepared by solid-state synthesis using stoichiometric mixtures of Bi2O3 and V2O5. The effect of temperature on the heat capacity of the synthesized bismuth vanadates has been studied by differential scanning calorimetry in the range 350–950 K. The C p (T) curves have extrema at 531.7 K for BiVO4 and at 725.2 and 852.8 K for Bi4V2O11, which are due to polymorphic transformations of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kargin, Yu.F., Burkov, V.I., Mar’in, A.A., et al., Kristally Bi12MxO20 ± δ so strukturoi sillenita. Sintez, stroenie, svoistva (Sillenite-Structure Bi12MxO20 ± δ Crystals: Synthesis, Structure, and Properties), Moscow: Inst. Obshchei i Neorgsnicheskoi Khimii Ross. Akad. Nauk, 2004.

    Google Scholar 

  2. Denisov, V.M., Belousova, N.V., Moiseev, G.K., et al., Vismutsoderzhashchie materialy: stroenie i fiziko-khimicheskie svoistva (Bismuth-Containing Materials: Structure and Physicochemical Properties), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2000.

    Google Scholar 

  3. Yukhin, Yu.M. and Mikhailov, Yu.I., Khimiya vismutovykh soedinenii i materialov (The Chemistry of Bismuth Compounds and Materials), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001.

    Google Scholar 

  4. Fotiev, A.A., Slobodin, B.V., and Khodos, M.Ya., Vanadaty. Sostav, sintez, struktura, svoistva (Vanadates: Composition, Synthesis, Structure, and Properties), Moscow: Nauka, 1988.

    Google Scholar 

  5. Chen, X., Liu, J., Wang, H., et al., One-step approach to novel Bi4V2O11 hierarchical hollow microspheres with high visible-light-driven photocatalytic activities, J. Mater. Chem. A, 2013, vol. 1, pp. 877–883.

    Article  CAS  Google Scholar 

  6. Zainullina, V.M., Zhukovskii, V.M., Buyanova, E.S., and Emel’yanova, Yu.V., Electronic structure and chemical bonding in oxygen conductor ß-Bi4V2O11 and ?-Bi4V2O11, Russ. J. Inorg. Chem., 2007, vol. 52, no. 2, pp. 225–232.

    Article  Google Scholar 

  7. Bhattacharya, A.K., Mallick, K.K., and Hartridge, A., Phase transition in BiVO4, Mater. Lett., 1997, vol. 30, pp. 7–13.

    Article  CAS  Google Scholar 

  8. Gotic, M., Music, S., Ivanda, M., et al., Synthesis and characterization of bismuth(III) vanadate, J. Mol. Struct., 2005, vols. 744–747, pp. 535–540.

    Article  Google Scholar 

  9. Blinovskov, Ya.N. and Fotiev, A.A., System Bi2O3–V2O5, Zh. Neorg. Khim., 1987, vol. 32, no. 1, pp. 254–256.

    CAS  Google Scholar 

  10. Touboul, M. and Vachon, C., The Bi2O3–V2O5 system and crystal data about some bismuth vanadates, Thermochim. Acta, 1988, vol. 133, pp. 61–66.

    Article  CAS  Google Scholar 

  11. Smolyaninov, N.P. and Belyaev, I.N., Phase equilibria in the Bi2O3–V2O5–PbO system, Zh. Neorg. Khim., 1963, vol. 8, no. 5, pp. 1219–1223.

    CAS  Google Scholar 

  12. Roy, M., Sahu, S., Awasthi, A.M., and Bharadwaj, S., Synthesis, electrical and thermal properties of Bi4V2–x MexO11 (Me = Nb,Zr,Y and Cu with x = 0.0 and 0.06) ceramics, J. Therm. Anal. Calorim., 2014, vol. 115, pp. 1265–1271.

    Article  CAS  Google Scholar 

  13. Tret’yakov, Yu.D. and Putlyaev, V.I., Vvedenie v khimiyu tverdofaznykh materialov (Introduction to the Chemistry of Solids), Moscow: Mosk. Gos. Univ., 2006.

    Google Scholar 

  14. Tret’yakov, Yu.D., Tverdofaznye reaktsii (Solid-State Reactions), Moscow: Khimiya, 1978.

    Google Scholar 

  15. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.

    Article  CAS  Google Scholar 

  16. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., et al., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.

    Article  CAS  Google Scholar 

  17. David, W.I.F., Glazer, A.M., and Hewat, A.W., The structure and ferroelastic phase transition of BiVO4, Phase Transitions, 1979, vol. 1, pp. 155–179.

    Article  CAS  Google Scholar 

  18. Sleight, A.W., Chen, H.-Y., Ferretti, A., et al., Crystal growth and structure of BiVO4, Mater. Res. Bull., 1979, vol. 14, pp. 1571–1581.

    Article  CAS  Google Scholar 

  19. Yeom, T.H. and Chon, S.H., Microscopic studies of the phase transition in ferroelastic BiVO4 by using magnetic resonances of 51V and Mn2+, J. Korean Phys. Soc., 1998, vol. 33, no. 5, pp. L529–L531.

    CAS  Google Scholar 

  20. Manolikas, C. and Amelinckx, S., Ferroelastic domains in BiVO4, Phys. Status Solidi A, 1980, vol. 60, pp. 167–172.

    Article  CAS  Google Scholar 

  21. Beg, S., Haneef, S., and Al-Areqi, N.A.S., Study of electrical conductivity and phase transition in Bi2O3–V2O5 system, Phase Transitions, 2010, vol. 83, no. 12, pp. 1114–1125.

    Article  CAS  Google Scholar 

  22. Maireßse, G., Roußsel, P., Vannir, R.N., et al., Crystal structure determination of a,ß and-Bi4V2O11 polymorphs. Part I: and #x00DF;-Bi4V2O11, Solid State Sci., 2003, vol. 5, pp. 851–859.

    Article  Google Scholar 

  23. Maireßse, G., Roussel, P., Vannir, R.N., et al., Crystal structure determination of a,ßand Bi4V2O11 polymorphs. Part II: crystal structure of a-Bi4V2O11, Solid State Sci., 2003, vol. 5, pp. 861–869.

    Article  Google Scholar 

  24. Watanabe, A., Preparation and characterization of a new triclinic compound Bi3.5V1.2O8.25 to show the known Bi4V2O11 to be nonexistent as a single phase, J. Solid State Chem., 2001, vol. 161, pp. 410–415.

    Article  CAS  Google Scholar 

  25. Abraham, F., Debreuille-Gresse, M.F., Mairesse, G., et al., Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure, Solid State Ionics, 1988, vols. 28–30, pp. 529–532.

    Article  Google Scholar 

  26. Joubert, O., Jouanneaux, A., and Ganne, M., Crystal structure of low-temperature form of bismuth vanadium oxide determined by refinement of X-ray and neutron diffraction data (a-Bi4V2O11), Mater. Res. Bull., 1994, vol. 29, no. 2, pp. 175–184.

    Article  CAS  Google Scholar 

  27. Kashida, S. and Hori, T., X-ray study of the cation distribution in the ternary oxide, 6Bi2O3–V2O5, J. Solid State Chem., 1996, vol. 122, pp. 358–363.

    Article  CAS  Google Scholar 

  28. Darriet, J., Launay, J.C., and Zúniga, F.J., Crystal structures of the ionic conductors Bi46M8O89 (M = P, V) related to the fluorite-type structure, J. Solid State Chem., 2005, vol. 178, pp. 1753–1764.

    Article  CAS  Google Scholar 

  29. Zhou, W., The type IIsuperstructural family in the Bi2O3–V2O5 system, J. Solid State Chem., 1990, vol. 87, pp. 44–54.

    Article  CAS  Google Scholar 

  30. Gusev, A.I., Nestekhiometriya, besporyadok, blizhnii i dal’nii poryadok v tverdom tele (Nonstoichiometry, Disorder, and Short- and Long-Range Order in Solids), Moscow: Fizmatlit, 2007.

    Google Scholar 

  31. Vannier, R.N., Mairesse, G., Abraham, F., et al., Thermal behavior of Bi4V2O11: X-ray diffraction and impedance spectroscopy studies, Solid State Ionics, 1995, vol. 78, pp. 183–189.

    Article  CAS  Google Scholar 

  32. Borisov, V.N., Poplavko, Yu.M., Avakyan, P.B., et al., Phase transitions of bismuth vanadate, Fiz. Tverd. Tela (Leningrad), 1988, vol. 30, no. 5, pp. 1560–1562.

    CAS  Google Scholar 

  33. Lee, C.K., Lim, G.S., and West, A.R., Phase diagrams and stoichiometries of the solid electrolytes,Bi4V2O11:M,M = Co, Cu,Zn,Ca,Sr, J. Mater. Chem., 1994, vol. 4, no. 9, pp. 1441–1444.

    Article  CAS  Google Scholar 

  34. Huvé, M., Vannier, R.-N., Nowogrocki, G., et al., From Bi4V2O11 to Bi4V2O10.66: the VV–VIV transformation in the Aurivillius-type framework, J. Mater. Chem., 1996, vol. 6, no. 8, pp. 1339–1345.

    Article  Google Scholar 

  35. Abrahams, I., Buch, A.J., Krok, F., et al., Effects of preparation parameters on oxygen stoichiometry in Bi4V2O11–d, J. Mater. Chem., 1998, vol. 8, no. 5, pp. 1213–1217.

    Article  CAS  Google Scholar 

  36. Lee, C.K. and Ong, C.S., Synthesis and characterization of rare earth substituted bismuth vanadate solid electrolytes, Solid State Ionics, 1999, vol. 117, pp. 301–310.

    Article  CAS  Google Scholar 

  37. Garcia-González, E., Arribas, M., and Gonzlez-Calbet, J.M., Oxygen content and microstructure in Bi4V2O11–d, J. Mater. Chem., 2001, vol. 11, pp. 2320–2323.

    Article  Google Scholar 

  38. Lee, C.K., Sinclair, D.C., and West, A.R., Stoichiometry and stability of bismuth vanadate Bi4V2O11 solid solutions, Solid State Ionics, 1993, vol. 62, pp. 193–198.

    Article  CAS  Google Scholar 

  39. Denisova, L.T., Izotov, A.D., Chumilina, L.G., et al., Heat capacity and thermodynamic properties of bismuth orthovanadate in the temperature range 356–980 K, Dokl. Phys. Chem., 2016, vol. 467, no. 1, pp. 41–44.

    Article  CAS  Google Scholar 

  40. Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 295, pp. 27–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Original Russian Text © L.T. Denisova, L.A. Irtyugo, Yu.F. Kargin, L.G. Chumilina, N.V. Belousova, V.M. Denisov, N.A. Galiakhmetova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 3, pp. 289–295.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Irtyugo, L.A., Kargin, Y.F. et al. High-temperature heat capacity of the oxide compounds in the Bi2O3–V2O5 system. Inorg Mater 53, 300–306 (2017). https://doi.org/10.1134/S0020168517030037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517030037

Keywords

Navigation