Skip to main content
Log in

Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena part II. Active centers and sensor behavior

  • Published:
Inorganic Materials Aims and scope

Abstract

The experimental data and theoretical concepts on the nature and physicochemical properties of the active centers at the surface of tin dioxide are reported, which are involved in detection of toxic and explosive ambient impurities. The active centers formed at the nanocrystal SnO2 surface are classified on the basis of their chemical properties, and their role in the interaction of semiconductor nanocrystal oxides with the gases exhibiting the redox properties is confirmed. The chemical modification of the SnO2 surface aimed at elaborating a controlled amount of specific active centers is shown to be the most efficient method for increasing the selectivity of sensors. Selecting the optimum catalytic modifiers (nanoparticles or clusters of noble metals and their oxides) allows the sensor sensitivity and selectivity of the target gas detection to be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Chemical Physics of Surfaces, Morrison, S., Ed., New York: Plenum, 1977.

  2. Davydov, A., Molecular Spectroscopy of Oxide Catalyst Surfaces, Chichester, UK: Wiley, 2003.

    Book  Google Scholar 

  3. Gurlo, A., Barsan, N., and Weimar, U., Gas sensors based on semiconducting metal oxides, in Metal Oxides, Fierro, J.L.G., Ed., Boca Raton, FL: CRC Press, 2006, pp. 683–738.

    Google Scholar 

  4. Cabot, A., Arbiol, J., Morante, J.R., Weimar, U., Barsan, N., and Gopel, W., Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors, Sens. Actuators B, 2000, vol. 70, pp. 87–100.

    Article  CAS  Google Scholar 

  5. Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M., and Samoylov, A.M., Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1329–1347.

    Article  CAS  Google Scholar 

  6. Yamazoe, N. and Shimanoe, K., Receptor function and response of semiconductor gas sensor, J. Sens., 2009, vol. 21, pp. 1–21.

    Article  CAS  Google Scholar 

  7. Park, C.O. and Akbar, S.A., Ceramics for chemical sensing, J. Mater. Sci., 2003, vol. 38, pp. 4611–4637.

    Article  CAS  Google Scholar 

  8. Yamazoe, N., Toward innovations of gas sensor technology, Sens. Actuators B, 2005, vol. 108, pp. 2–14.

    Article  CAS  Google Scholar 

  9. Samotaev, N.N., Vasiliev, A.A., Podlepetsky, B.I., Sokolov, A.V., and Pisliakov, A.V., The mechanism of the formation of selective response of semiconductor gas sensor in mixture of CH4/H2/CO with air, Sens. Actuators B, 2007, vol. 127, pp. 242–247.

    Article  CAS  Google Scholar 

  10. Prades, J.D., Jimenez-Diaz, R., Hernandez-Ramirez, F., Barth, S., Cirera, A., Romano-Rodriguez, A., Mathur, S., and Morant, J.R., Equivalence between thermal and room temperature UVlight-modulated responses of gas sensors based on individual SnO2 nanowires, Sens. Actuators B, 2009, vol. 140, pp. 337–341.

    Article  CAS  Google Scholar 

  11. Gaggiotti, G., Galdikas, A., Kacilius, S., Mattogno, G., and Setkus, A., Surface chemistry of tin oxide based gas sensors, J. Appl. Phys., 1994, vol. 76, pp. 4467–4471.

    Article  CAS  Google Scholar 

  12. Ivanovskaya, M.I., Branitskii, G.A., Orlik, D.R., Mal’chenko, S.I., and Vrublevskii, A.I., The nature of paramagnetic centers in the tin dioxide, Zh. Neorg. Khim., 1992, vol. 37, pp. 1147–1152.

    CAS  Google Scholar 

  13. Rumyantseva, M.N., Makeeva, E.A., Badalyan, S.M., Zhukova, A.A., and Gaskov, A.M., Nanocrystalline SnO2 and In2O3 as materials for gas sensors: the relationship between microstructure and oxygen chemisorption, Thin Solid Films, 2009, vol. 518, pp. 1283–1288.

    Article  CAS  Google Scholar 

  14. Kilic, C. and Zunger, A., Origins of coexistence of conductivity and transparency in SnO2, J. Phys. Rev. Lett., 2002, vol. 88, no. 9, pp. 095501(1)–095501(4).

    Article  CAS  Google Scholar 

  15. Pavelko, R.G., Daly, H., Hardacre, C., Vasiliev, A.A., and Llobet, E., Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms, Phys. Chem. Chem. Phys., 2010, vol. 12, pp. 2639–2647.

    Article  CAS  Google Scholar 

  16. Wang, Y., Jacobi, K., Scholne, W.-D., and Ertl, G., Catalytic oxidation of ammonia on RuO2(110) surfaces: mechanism and selectivity, J. Phys. Chem. B, 2005, vol. 109, pp. 7883–7893.

    Article  CAS  Google Scholar 

  17. Yamaguchi, Y., Tabata, K., and Suzuki, E., Density functional theory calculations for the interaction of oxygen with reduced M/SnO2(110) (M = Pd, Pt) surfaces, Surf. Sci., 2003, vol. 526, pp. 149–158.

    Article  CAS  Google Scholar 

  18. Abee, M.W. and Cox, D.F., NH3 chemisorption on stoichometric and oxygen-deficient SnO2(110) surfaces, Surf. Sci., 2002, vol. 520, pp. 65–77.

    Article  CAS  Google Scholar 

  19. McAleer, J.F., Moseley, P.T., Norris, J.O.W., and Williams, D.E., Tin dioxide gas sensors. Part 1: Aspects of the surface chemistry revealed by electrical conductance variations, J. Chem. Soc., Faraday Trans., 1987, vol. 83, pp. 1323–1346.

    Article  CAS  Google Scholar 

  20. Zhang, Y., Kolmakov, A., Lilach, Y., and Moskovits, M., Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire, J. Phys. Chem. B, 2005, vol. 109, pp. 1923–1929.

    Article  CAS  Google Scholar 

  21. Epifani, M., Prades, J.D., Comini, E., Pellicer, E., Avella, M., Siciliano, P., Faglia, G., Cirera, A., Scotti, R., Morazzoni, F., and Morante, J.R., The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals, J. Phys. Chem. C, 2008, vol. 112, pp. 19540–19546.

    Article  CAS  Google Scholar 

  22. Sahm, T., Gurlo, A., Barsan, N., and Weimar, U., Basics of oxygen and SnO2 interaction; work function change and conductivity measurements, Sens. Actuators B, 2006, vol. 118, pp. 78–83.

    Article  CAS  Google Scholar 

  23. Gurlo, A., Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen, Chem. Phys. Chem., 2006, vol. 7, pp. 2041–2052.

    CAS  Google Scholar 

  24. Prades, J.D., Cirera, A., Morante, J.R., Pruneda, J.M., and Ordejon, P., Ab initio study of NOx compounds adsorption on SnO2 surface, Sens. Actuators B, 2007, vol. 126, pp. 62–67.

    Article  CAS  Google Scholar 

  25. Hadjiivanov, K.I. and Vayssilov, G.N., Characterization of oxide surfaces and zeolites by carbon monoxide as IR probe molecule, Adv. Catal., 2002, vol. 47, pp. 307–511.

    CAS  Google Scholar 

  26. Egashira, M., Nakashima, M., Kawasumi, S., and Seiyama, T., Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces, J. Phys. Chem., 1981, vol. 85, pp. 4125–4130.

    Article  CAS  Google Scholar 

  27. Kovalenko, V.V., Zhukova, A.A., Rumyantseva, M.N., Gaskov, A.M., Yushchenko, V.V., Ivanova, I.I., and Pagnier, T., Surface chemistry of nanocrystalline SnO2: effect of thermal treatment and additives, Sens. Actuators B, 2007, vol. 126, pp. 52–55.

    Article  CAS  Google Scholar 

  28. Jina, S., Kwon, K., Park, C., and Chang, H., The oxygen reduction electrocatalytic activity of intermetallic compound of palladium-tin supported on tin oxidecarbon composite, Catal. Today, 2011, vol. 164, pp. 176–180.

    Article  CAS  Google Scholar 

  29. Neri, G., Bonavita, A., Micali, G., Rizzo, G., Pinna, N., Niederberger, M., and Ba, J., Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method, Sens. Actuators B, 2008, vol. 130, pp. 222–230.

    Article  CAS  Google Scholar 

  30. Williams, D.E. and Pratt, K.F.E., Classification of reactive sites on the surface of polycrystalline tin dioxide, J. Chem. Soc. Faraday Trans., 1998, vol. 94, pp. 3493–3500.

    Article  CAS  Google Scholar 

  31. Hübner, M., Pavelko, R.G., Barsan, N., and Weimar, U., Influence of oxygen backgrounds on hydrogen sensing with SnO2 nanomaterials, Sens. Actuators B, 2011, vol. 154, pp. 264–269.

    Article  CAS  Google Scholar 

  32. Schmid, W., Barsan, N., and Weimar, U., Sensing of hydrocarbons and COin low oxygen conditions with tin dioxide sensors: possible conversion paths, Sens. Actuators B, 2004, vol. 103, pp. 362–368.

    Article  CAS  Google Scholar 

  33. Baraton, M.I., Spectroscopic study of the gas detection mechanism by semiconductor chemical sensors, Proc. NATO Advanced Study Institute on Sensors for Environment, Health, and Security “Advanced Materials and Technologies,” Vichy, France, 2007, pp. 31–45.

    Google Scholar 

  34. Du, X., Du, Y., and George, S.M., CO gas sensing by ultrathin tin oxide films grown by atomic layer deposition using transmission FTIR spectroscopy, J. Phys. Chem. A, 2008, vol. 112, pp. 9211–9219.

    Article  CAS  Google Scholar 

  35. Kohl, D., Function and applications of gas sensors, J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 125–149.

    Article  Google Scholar 

  36. Safonova, O., Bezverkhy, I., Fabrichnyi, P., Rumyantseva, M., and Gaskov, A., Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements, J. Mater. Chem., 2002, vol. 12, pp. 1174–1178.

    Article  CAS  Google Scholar 

  37. Koziej, D., Thomas, K., Barsan, N., Thibault-Starzyk, F., and Weimar, U., Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors-Operando studies, Catal. Today, 2007, vol. 126, pp. 211–218.

    Article  CAS  Google Scholar 

  38. Rumyantseva, M.N. and Gaskov, A.M., Chemical modification of nanocrystalline metal oxides: effect of the real structure and surface chemistry on the sensor properties, Russ. Chem. Bull., 2008, vol. 57, pp. 1106–1125.

    Article  CAS  Google Scholar 

  39. Gurlo, A. and Riedel, R., In situ and Operando spectroscopy for assessing mechanisms of gas sensing, Angew. Chem., Int. Ed., 2007, vol. 46, pp. 3826–3848.

    Article  CAS  Google Scholar 

  40. Habgood, M. and Harrison, N., An ab initio study of oxygen adsorption on tin dioxide, Surf. Sci., 2008, vol. 602, pp. 1072–1079.

    Article  CAS  Google Scholar 

  41. Batzill, M. and Diebold, U., The surface and materials science of tin oxide, Progr. Surf. Sci., 2005, vol. 79, pp. 47–154.

    Article  CAS  Google Scholar 

  42. Kolmakov, A., Klenov, D.O., Lilach, Y., Stemmer, S., and Moskovits, M., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett., 2005, vol. 5, no. 4, pp. 667–673.

    Article  CAS  Google Scholar 

  43. Yamazoe, N., Fuchigami, J., Kishikawa, M., and Seiyama, T., Interactions of tin oxide surface with oxygen, water, and hydrogen, Surf. Sci., 1979, vol. 86, pp. 335–344.

    CAS  Google Scholar 

  44. Tabata, K., Kawabe, T., Yamaguchi, Y., and Nagasawa, Y., Chemisorbed oxygen species over the (110) face of SnO2, Catal. Surv. Asia, 2003, vol. 7, pp. 251–259.

    Article  CAS  Google Scholar 

  45. Shen, G.L., Casanova, R., and Thornton, G., Interaction of O2 with SnO2(110)1×1 and 4×1, Vacuum, 1992, vol. 43, pp. 1129–1135.

    Article  CAS  Google Scholar 

  46. Oprea, A., Barsan, N., and Weimar, U., Work function changes in gas sensitive materials: fundamentals and applications, Sens. Actuators B, 2009, vol. 142, pp. 470–493.

    Article  CAS  Google Scholar 

  47. Zhu, Z., Deka, R.C., Chutia, A., Sahnoun, R., Tsuboi, H., and Koyama, M., Enhanced gas-sensing behavior of Ru-doped SnO2 surface: a periodic density functional approach, J. Phys. Chem. Solids, 2009, vol. 70, pp. 1248–1255.

    Article  CAS  Google Scholar 

  48. Chang, S.-C., Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements, J. Vac. Sci. Technol., 1980, vol. 17, pp. 366–369.

    Article  CAS  Google Scholar 

  49. Koziej, D., Barsan, N., Weimar, U., Szuber, J., Shimanoe, K., and Yamazoe, N., Water-oxygen interplay on tin dioxide surface: Implication on gas sensing, Chem. Phys. Lett., 2005, vol. 410, pp. 321–323.

    Article  CAS  Google Scholar 

  50. Hahn, S.H., Barsan, N., Weimar, U., Ejakov, S.G., Visser, J.H., and Soltis, R.E., CO sensing with SnO2 thick film sensors: role of oxygen and water vapor, Thin Solid Films, 2003, vol. 436, pp. 17–24.

    Article  CAS  Google Scholar 

  51. Rella, R., Siciliano, P., Capone, S., Epifani, M., Vasanelli, L., and Licciulli, A., Air quality monitoring by means of sol-gel integrated tin oxide thin films, Sens. Actuators B, 1999, vol. 58, pp. 283–288.

    Article  CAS  Google Scholar 

  52. Lee, Y.C., Huang, H., Tan, O.K., and Tse, M.S., Semiconductor gas sensors based on Pd-doped SnO2 nanorod thin films, Sens. Actuators B, 2008, vol. 132, pp. 239–242.

    Article  CAS  Google Scholar 

  53. Srivastava, J.K., Pandey, P., Mishra, V.N., and Dwivedi, R., Sensing mechanism of Pd-doped SnO2 sensor for LPG detection, Solid State Sci., 2009, vol. 11, pp. 1602–1605.

    Article  CAS  Google Scholar 

  54. Rout, C.S., Hegde, M., Govindaraj, A., and Rao, C.N., Ammonia sensors based on metal oxide nanostructures, Nanotechnology, 2007, vol. 18, pp. 205504–205513.

    Article  CAS  Google Scholar 

  55. Lopez, N., Prades, J.D., Hernandez-Ramirez, F., Morante, J.R., and Mathur, S., Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2-x under different gas environments, Phys. Chem. Chem. Phys., 2010, vol. 12, pp. 2401–2406.

    Article  CAS  Google Scholar 

  56. Canevali, C., Chiodini, N., Morazzoni, F., and Scotti, R., Electron paramagnetic resonance characterization of ruthenium-dispersed tin oxide obtained by sol-gel and impregnation methods, J. Mater. Chem., 2000, vol. 10, pp. 773–778.

    Article  CAS  Google Scholar 

  57. Maier, J. and Gopel, W., Investigation of the bulk defect chemistry of polycrystalline tin (IV) oxide, J. Solid State Chem., 1988, vol. 72, pp. 293–302.

    Article  CAS  Google Scholar 

  58. Mizusaki, J., Koinuma, H., Shimoyama, J.I., Kawasaki, M., and Fueki, K., High temperature gravimetric study on nonstoichometry and oxygen adsorption of SnO2, J. Solid State Chem., 1990, vol. 8, pp. 443–450.

    Article  Google Scholar 

  59. Hernandez-Ramirez, F., Prades, J.D., Tarancon, A., Barth, S., Casals, O., Jimenez-Diaz, R., Pellicer, E., Rodriguez, J., Morante, J.R., Juli, M.A., Mathur, S., and Romano-Rodriguez, A., Insight into the role of oxygen diffusion in the sensing mechanisms of SnO2 nanowires, Adv. Funct. Mater., 2008, vol. 18, pp. 2990–2994.

    Article  CAS  Google Scholar 

  60. Konstantinova, E.A., Pentegov, I.S., Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M., and Kashkarov, P.K., EPR study of nanocrystalline tin dioxide, Phys. Status Solidi C, 2011, vol. 8, pp. 1957–1960.

    Article  CAS  Google Scholar 

  61. Heiland, G. and Kohl, D., Physical and chemical aspects of oxidic semiconductor gas sensors, in Chemical Sensor Technology, Seiyama, T., Ed., Tokyo: Kodansha, 1988, pp. 15–38.

    Chapter  Google Scholar 

  62. Wertz, J.E. and Bolton, J.R., Electron Spin Resonance, New York: McGraw Hill, 1972.

    Google Scholar 

  63. Harbeck, S., Szatvanyi, A., Barsan, N., Weimar, U., and Hoffmann, V., DRIFT studies of thick film undoped and Pd-doped SnO2 sensors: temperature changes effect and CO detection mechanism in the presence of water vapor, Thin Solid Films, 2003, vol. 436, pp. 76–83.

    Article  CAS  Google Scholar 

  64. Batzil, M. and Diebold, U., Surface studies of gas sensing metal oxides, Phys. Chem. Chem. Phys., 2007, vol. 19, no. 9, pp. 2307–2318.

    Article  CAS  Google Scholar 

  65. Barsan, N. and Weimar, U., Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, J. Phys.: Condens. Mater., 2003, vol. 15, pp. 813–839.

    Google Scholar 

  66. Helwig, A., Muller, G., Sberveglieri, G., and Eickhoff, M., On the low-temperature response of semiconductor gas sensors, J. Sens., 2009, vol. 2009, art. ID 620720.

    Article  CAS  Google Scholar 

  67. Koziej, D., Barsan, N., Shimanoe, K., Yamazoe, N., Szuber, J., and Weimar, U., Spectroscopic insights into COsensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol, Sens. Actuators B, 2006, vol. 118, pp. 98–104.

    Article  CAS  Google Scholar 

  68. Aroutiounian, V., Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 1145–1158.

    CAS  Google Scholar 

  69. Ramgir, N.S., Hwang, Y.K., Jhung, S.H., Mulla, I.S., and Chang, J.-S., Effect of Pt concentration on the physicochemical properties and CO sensing activity of mesostructured SnO2, Sens. Actuators B, 2006, vol. 114, pp. 275–282.

    Article  CAS  Google Scholar 

  70. Bahrami, B., Khodadadi, A., Kazemeini, M., and Mortazavi, Y., Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane, Sens. Actuators B, 2008, vol. 133, pp. 352–356.

    Article  CAS  Google Scholar 

  71. Yamazoe, N., Kurokawa, Y., and Seiyama, T., Effects of additives on semiconductor gas sensors, Sens. Actuators, 1983, vol. 4, pp. 283–289.

    Article  CAS  Google Scholar 

  72. Kazin, A.P., Rumyantseva, M.N., Prusakov, V.E., Suzdalev, I.P., and Gaskov, A.M., Nanocrystalline ferrites NixZn1-xFe2O4: Influence of cation distribution on acidic and gas sensing properties, Solid State Chem., 2011, vol. 184, pp. 2799–2805.

    Article  CAS  Google Scholar 

  73. Krivetskiy, V.V., Ponzoni, A., Comini, E., Badalyan, S.M., Rumyantseva, M.N., and Gaskov, A.M., Materials based on modified SnO2 for selective gas sensors, Inorg. Mater., 2010, vol. 46, pp. 1100–1105.

    Article  CAS  Google Scholar 

  74. Bond, G.C., Louis, C., and Thompson, D.T., Catalysis by Gold, London: Imper. Coll., 2006.

    Book  Google Scholar 

  75. Haruta, M., Catalysis of gold nanoparticles deposited on metal oxides, Catal. Tech., 2002, vol. 6, pp. 102–115.

    CAS  Google Scholar 

  76. Wang, C.-T. and Chen, M.-T., Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors, Sens. Actuators B, 2010, vol. 150, pp. 360–366.

    Article  CAS  Google Scholar 

  77. Wurzinger, O. and Reinhardt, G., CO-sensing properties of doped SnO2 sensors in H2-rich gases, Sens. Actuators B, 2004, vol. 103, pp. 104–110.

    Article  CAS  Google Scholar 

  78. Korotcenkov, G. and Cho, B.K., Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey), Sens. Actuators B, 2011, vol. 156, pp. 527–538.

    Article  CAS  Google Scholar 

  79. Wagh, M.S., Jain, G.H., Patil, D.R., Patil, S.A., and Patil, L.A., Modified zinc oxide thick film resistors as NH3 gas sensor, Sens. Actuators B, 2006, vol. 115, pp. 128–133.

    Article  CAS  Google Scholar 

  80. Santra, A.K. and Goodman, D.W., Oxide-supported metal clusters: models for heterogeneous catalysts, J. Phys.: Condens. Matter, 2002, vol. 14, pp. 31–62.

    Google Scholar 

  81. Savchenko, V.I., Boreskov, G.K., Kalinkin, A.V., and Salanov, A.N., Oxygen state on the surface of metals and catalytic activity in carbon dioxide oxidation, Kinet. Catal., 1983, vol. 24, pp. 983–989.

    Google Scholar 

  82. Over, H. and Muhler, M., Catalytic CO oxidation over ruthenium—bridging the pressure gap, Progr. Surf. Sci., 2003, vol. 72, pp. 3–17.

    Article  CAS  Google Scholar 

  83. Belmonte, J.C., Manzano, J., Arbiol, J., Cirera, A., Puigcorbe, J., Vila, A., Sabate, N., Gracia, I., Cane, C., and Morante, J.R., Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2, Sens. Actuators B, 2006, vol. 114, pp. 881–892.

    Article  CAS  Google Scholar 

  84. Korotcenkov, G., Brinzari, V., Boris, Y., Ivanov, M., Schwank, J., and Morante, J., Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pyrolysis, Thin Solid Films, 2003, vol. 436, pp. 119–126.

    Article  CAS  Google Scholar 

  85. Dolbec, R. and El Khakania, M.A., Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2:Pt based sensors, Appl. Phys. Lett., 2007, vol. 90, pp. 173114–173117.

    Article  CAS  Google Scholar 

  86. Manjula, P., Arunkumar, S., and Manorama, S.V., Au/SnO2 an excellent material for room temperature carbon monoxide sensing, Sens. Actuators B, 2011, vol. 152, pp. 168–175.

    Article  CAS  Google Scholar 

  87. Ramgir, N.S., Hwang, Y.K., Jhung, S.H., Kim, H.K., Hwang, J.-S., Mulla, I.S., and Chang, J.-S., CO sensor derived from mesostructured Au-doped SnO2 thin film, Appl. Surf. Sci., 2006, vol. 252, pp. 4298–4305.

    Article  CAS  Google Scholar 

  88. Santra, A.K. and Goodman, D.W., Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures, Electrochim. Acta, 2002, vol. 47, pp. 3595–3609.

    Article  CAS  Google Scholar 

  89. Yina, S.F., Xub, B.Q., Zhouc, X.P., and Au, C.T., A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications, Appl. Catal., A, 2004, vol. 277, pp. 1–9.

    Article  CAS  Google Scholar 

  90. Lorenzut, B., Montini, T., Pavel, C.C., Comotti, M., Vizza, F., Bianchini, C., and Fornasiero, P., Embedded RuZrO2 catalysts for H2 production by ammonia decomposition, ChemCatChem, 2010, vol. 2, no. 9, pp. 1096–1106.

    Article  CAS  Google Scholar 

  91. Schloegl, R., Catalytic synthesis of ammonia—a “never-ending story”? Angew. Chem. Int. Ed., 2003, vol. 42, pp. 2004–20

  92. Jones, G., Bligaard, T., Abild-Pedersen, F., and Norskov, J.K., Using scaling relations to understand trends in the catalytic activity of transition metals, J. Phys.: Condens. Matter, 2008, vol. 20, p. 064239.

    CAS  Google Scholar 

  93. Marikutsa, A., Krivetskiy, V., Yashina, L., Rumyantseva, M., Konstantinova, E., Ponzoni, A., Comini, E., Abakumov, A., and Gaskov, A., Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide, Sens. Actuators B, 2012, vol. 175, pp. 186–193.

    Article  CAS  Google Scholar 

  94. Cui, X., Zhou, J., Ye, Z., Chen, H., Li, L., Ruan, M., and Shi, J., Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-nanocasting-replication method, J. Catal., 2010, vol. 270, pp. 310–317.

    Article  CAS  Google Scholar 

  95. Salomonsson, A., Petoral, R.M., Uvdal, K., Aulin, C., Per-Olov, K., Ojama, L., Strand, M., Sanati, M., and Lloyd Spetz, A., Nanocrystalline ruthenium oxide and ruthenium in sensing applications—an experimental and theoretical study, J. Nanopart. Res., 2006, vol. 8, pp. 899–910.

    Article  CAS  Google Scholar 

  96. Frolov, D.D., Kotovshchikov, Y.N., Morozov, I.V., Boltalin, A.I., Fedorova, A.A., Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M., Sadovskaya, E.M., and Abakumov, A.M., Oxygen exchange on nanocrystalline tin dioxide modified by palladium, J. Solid State Chem., 2012, vol. 186, pp. 1–8.

    Article  CAS  Google Scholar 

  97. Chen, M. and Goodman, D.W., Catalytically active gold: from nanoparticles to ultrathin films, Acc. Chem. Res., 2006, vol. 39, pp. 739–746.

    Article  CAS  Google Scholar 

  98. Yang, F., Chen, M.S., and Goodman, D.W., Sintering of Au particles supported on TiO2(110) during CO oxidation, J. Phys. Chem. C, 2009, vol. 113, pp. 254–260.

    Google Scholar 

  99. Veith, G.M., Lupini, A.R., and Dudney, N.J., Role of pH in the formation of structurally stable and catalytically active TiO2-supported gold catalysts, J. Phys. Chem. C, 2009, vol. 113, pp. 269–280.

    Article  CAS  Google Scholar 

  100. Qi, C., Huang, J., Bao, S., Su, H., Akita, T., and Haruta, M., Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2, J. Catal., 2011, vol. 281, pp. 12–20.

    Article  CAS  Google Scholar 

  101. Chusuei, C.C., Lai, X., Luo, K., and Goodman, D.W., Modeling heterogeneous catalysts: metal clusters on planar oxide supports, Top. Catal., 2001, vol. 14, pp. 1–4.

    Google Scholar 

  102. Christmann, K., Schwede, S., Schubert, S., and Kudernatsch, W., Model studies on CO oxidation catalyst systems: titanium and gold nanoparticles, Chem. Phys. Chem., 2010, vol. 11, pp. 1344–1363.

    CAS  Google Scholar 

  103. Haruta, M., Nanoparticlulate gold catalysts for lowtemperature CO oxidation, J. New Mater. Electrochem. Syst., 2004, vol. 7, pp. 163–172.

    CAS  Google Scholar 

  104. Bukhtiyarov, V.I. and Slinko, M.G., Metallic nanosystems in catalysis, Russ. Chem. Rev., 2001, vol. 70, pp. 147–159.

    Article  CAS  Google Scholar 

  105. Stakheev, A.Y., Zhang, Y., Ivanov, A.V., Baeva, G.N., Ramaker, D.E., and Koningsberger, D.C., Separation of geometric and electronic effects of the support on the CO and H2 chemisorption properties of supported Pt particles: the effect of iconicity in modified alumina supports, J. Phys. Chem. C, 2007, vol. 111, pp. 3938–3948.

    Article  CAS  Google Scholar 

  106. Khelashvili, G. and Behrens, S., Preparation and characterization of low platinum loaded Pt:SnO2 electrocatalytic films for screen printed dye solar cell counter electrode, Thin Solid Films, 2007, vol. 515, pp. 4074–4079.

    Article  CAS  Google Scholar 

  107. Ramos-Fernandez, E.V., Silvestre-Albero, J., Sepulveda-Escribano, A., and Rodriguez-Reinoso, F., Effect of the metal precursor on the properties of Ru/ZnO catalysts, Appl. Catal. A: Gen., 2010, vol. 374, pp. 221–227.

    Article  CAS  Google Scholar 

  108. Tanaka, H., Kuriyama, M., Ishida, Y., Ito, S., Tomishige, K., and Kunimori, K., Preferential COoxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals: Part I. Catalytic performance, Appl. Catal., A, 2008, vol. 343, pp. 117–124.

  109. Beck, I.E., Kriventsov, V.V., Novgorodova, B.N., Yakimchuk, E.P., Kochubey, D.I., Zaikovsky, V.I., Pakharukov, I.Y., Kozitsyna, N.Y., Vargaftik, M.N., and Bukhtiyarov, V.I., Structural determination of palladous oxide-ceria nanosystem supported on ?-alumina, Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, pp. 178–181.

    Article  CAS  Google Scholar 

  110. Kung, M.C., Davis, R.J., and Kung, H.H., Understanding Au-catalyzed low-temperature CO oxidation, J. Phys. Chem. C, 2007, vol. 111, pp. 11767–11775.

    Article  CAS  Google Scholar 

  111. Haruta, M., When gold is not noble: catalysis by nanoparticles, Chem. Rec., 2003, vol. 3, pp. 75–87.

    Article  CAS  Google Scholar 

  112. Moroz, B.L., Pyrjaev, P.A., Zaikovskii, V.I., and Bukhtiyarov, V.I., Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: results of research activity at the Boreskov Institute of Catalysis, Catal. Today, 2009, vol. 144, pp. 292–305.

    Article  CAS  Google Scholar 

  113. Delannoy, L., Weiher, N., Tsapatsaris, N., Beesley, A.M., Nchari, L., Schroeder, S.L.M., and Louisa, C., Reducibility of supported gold (III) precursors: influ ence of the metal oxide support and consequences for COoxidation activity, Top. Catal., 2007, vol. 44, pp. 263–273.

    Article  CAS  Google Scholar 

  114. Okamoto, Y., Comparison of hydrogen adsorption on Pt clusters with that on Pt surfaces: a study from density- functional calculations, Chem. Phys. Lett., 2006, vol. 429, pp. 209–213.

    Article  CAS  Google Scholar 

  115. Okumura, M., Tsubota, S., and Haruta, M., Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2, J. Mol. Catal. A: Chem., 2003, vol. 199, pp. 73–84.

    Article  CAS  Google Scholar 

  116. Akita, T., Okumura, M., Tanaka, K., and Haruta, M., SEM and RHEED–REM study of Au particles deposited on rutile TiO2(110) by deposition precipitation and gas-phase grafting methods, J. Catal., 2002, vol. 212, pp. 119–123.

    Article  CAS  Google Scholar 

  117. Yuasa, M., Masaki, T., Kida, T., Shimanoe, K., and Yamazoe, N., Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor, Sens. Actuators B, 2009, vol. 136, pp. 99–104.

    Article  CAS  Google Scholar 

  118. McCue, J.T. and Ying, J.Y., SnO2-In2O3 nanocomposites as semiconductor gas sensors for CO and NOx detection, Chem. Mater., 2007, vol. 19, pp. 1009–1015.

    Article  CAS  Google Scholar 

  119. Ramgir, N.S., Hwang, Y.K., Jhung, S.H., Kim, H.K., Hwang, J.-S., Mulla, I.S. and Chang, J.-S., CO sensor derived from mesostructured Au-doped SnO2 thin film, Appl. Surf. Sci., 2006, vol. 252, pp. 4298–4305.

    Article  CAS  Google Scholar 

  120. Wang, S., Zhao, Y., Huang, J., Wang, Y., Ren, H., Wu, S., Zhang, S., and Huang, W., Low-temperature CO gas sensors based on Au/SnO2 thick film, Appl. Surf. Sci., 2007, vol. 253, pp. 3057–3061.

    Article  CAS  Google Scholar 

  121. Safonova, O.V., Delabouglise, G., Chenevier, B., Gaskov, A.M., and Labeau, M., CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru, and Rh, Mater. Sci. Eng., C, 2002, vol. 21, pp. 105–111.

    Article  Google Scholar 

  122. Ashcroft, S.J. and Schwarzmann, E., Standard enthalpy of formation of crystalline gold (III) oxide, J. Chem. Soc., Faraday Trans., 1972, vol. 68, pp. 1360–1361.

    Article  CAS  Google Scholar 

  123. Bahrami, B., Khodadadi, A., Kazemeini, M., and Mortazavi, Y., Enhanced COsensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane, Sens. Actuators B, 2008, vol. 133, pp. 352–356.

  124. Neri, G., Bonavita, A., Milone, C., and Galvagno, S., Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors, Sens. Actuators B, 2003, vol. 93, pp. 402–408.

    Article  CAS  Google Scholar 

  125. Miller, J.T., Kropf, A.J., Zhac, Y., Regalbutoc, J.R., Delannoy, L., Louis, C., Bus, E., and van Bokhoven, J.A., The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts, J. Catal., 2006, vol. 240, pp. 222–234.

    Article  CAS  Google Scholar 

  126. Koziej, D., Hubner, M., Barsan, N., Weimar, U., Sikorazc, M., and Grunwaldt, J.-D., Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors, Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 8620–8625.

    Article  CAS  Google Scholar 

  127. Marikutsa, A.V., Rumyantseva, M.N., Yashina, L.V., and Gaskov, A.M., Role of surface hydroxyl groups in promoting room temperature CO sensing by Pd-modified nanocrystalline SnO2, J. Solid State Chem., 2010, vol. 183, pp. 2389–2399.

    Article  CAS  Google Scholar 

  128. Schierbaum, K.D., Kirner, U.K., Geiger, J.F., and Göpel, W., Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2, Sens. Actuators B, 1991, vol. 4, pp. 87–94.

    Article  CAS  Google Scholar 

  129. Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M., Konstantinova, E.A., Grishina, D.A., and Deygen, D.M., CO and NH3 sensor properties and paramagnetic centers of nanocrystalline SnO2 modified by Pd and Ru, Thin Solid Films, 2011, vol. 520, pp. 904–908.

    Article  CAS  Google Scholar 

  130. Gaidi, M., Hazeman, J.L., Matko, I., Chenevier, B., Rumyantseva, M.N., Gaskov, A.M., and Labeau, M., Role of Pt aggregates in Pt/SnO2 thin films used as gas sensors: investigation of the catalytic effect, J. Electrochem. Soc., 2000, vol. 147, pp. 3131–3139.

    Article  CAS  Google Scholar 

  131. Matsushima, S., Teraoka, Y., Miura, N., and Yamazoe, N., Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors, Jpn. J. Appl. Chem., 1988, vol. 27, pp. 1798–1802.

    Article  CAS  Google Scholar 

  132. Yun, D.-J., Lee, S., Yong, K., and Rhee, S.-W., In situ ultraviolet photoemission spectroscopy measurement of the pentacene–RuO2/Ti contact energy structure, Appl. Phys. Lett., 2010, vol. 97, pp. 1–3.

  133. Chaston, J.C., Reaction of oxygen with the platinum metals, Platinum Metals Rev., 1964, vol. 8, pp. 50–54.

    CAS  Google Scholar 

  134. Kiss, G., Josepovits, V.K., Kovacs, K., Ostrick, B., Fleischer, M., Meixner, H., and Reti, F., CO sensitivity of the PtO-SnO2 and PdO-SnO2 layer structures: Kelvin probe and XPS analysis, Thin Solid Films, 2003, vol. 436, pp. 115–118.

    Article  CAS  Google Scholar 

  135. Safonova, O.V., Rumyantseva, M.N., Ryabova, L.I., Labeau, M., Delabouglise, G., and Gaskov, A.M., Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide, Mater. Sci. Eng., B, 2001, vol. 85, pp. 43–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Samoylov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M. et al. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena part II. Active centers and sensor behavior. Inorg Mater 52, 1311–1338 (2016). https://doi.org/10.1134/S0020168516130045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516130045

Keywords

Navigation