Skip to main content
Log in

Effect of Ga and in doping on acid centers and oxygen chemisorption on the surface of nanocrystalline ZnO

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanocrystalline gallium- and indium-doped zinc oxide samples have been prepared through coprecipitation from aqueous solutions. Acid centers on the surface of the materials have been investigated using temperature-programmed desorption and IR spectroscopy. The results demonstrate that, with increasing dopant concentration, the density of OH groups on the surface of ZnO〈Ga〉 and ZnO〈In〉 increases and the contribution of cation centers to surface acidity decreases. The interaction of the material with oxygen has been studied using in situ electrical conductivity measurements. Doping of zinc oxide with gallium or indium has been shown to increase the percentage of molecular chemisorbed oxygen species on the surface of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozgur, U., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoc, H., A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005, vol. 98, paper 041301.

    Google Scholar 

  2. Hagemark, K.I. and Toren, P.E., Determination of excess Zn in ZnO. The phase boundary Zn–Zn1 + x O, J. Electrochem. Soc., 1975, vol. 122, pp. 992–994.

    Article  CAS  Google Scholar 

  3. Park, C.O. and Akbar, S.A., Ceramics for chemical sensing, J. Mater. Sci., 2003, vol. 38, pp. 4611–4637.

    Article  CAS  Google Scholar 

  4. Ellmer, K., Transparent conductive zinc oxide and its derivatives, Handbook of Transparent Conductors, Ginley, D.S., et al., Eds., New York: Springer, 2010, pp. 193–263.

  5. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  6. Davydov, A., Molecular Spectroscopy of Oxide Catalyst Surfaces, Chichester: Wiley, 2003.

    Book  Google Scholar 

  7. Rao, T.P. and Kumar, M.C.S., Physical properties of Ga-doped ZnO thin films by spray pyrolysis, J. Alloys Compd., 2010, vol. 506, pp. 788–793.

    Article  Google Scholar 

  8. Vorobyeva, N., Rumyantseva, M., Filatova, D., Konstantinova, E., Grishina, D., Abakumov, A., Turner, S., and Gaskov, A., Nanocrystalline ZnO(Ga): paramagnetic centers, surface acidity and gas sensor properties, Sens. Actuators, B, 2013, vol. 182, pp. 555–564.

    Article  CAS  Google Scholar 

  9. Barsan, N. and Weimar, U., Conduction model of metal oxide gas sensors, Electroceramics, 2001, vol. 7, pp. 143–167.

    Article  CAS  Google Scholar 

  10. Rumyantseva, M.N., Makeeva, E.A., Badalyan, S.M., Zhukova, A.A., and Gaskov, A.M., Nanocrystalline SnO2 and In2O3 as materials for gas sensors: the relationship between microstructure and oxygen chemisorption, Thin Solid Films, 2009, vol. 518, pp. 1283–1288.

    Article  CAS  Google Scholar 

  11. Ozawa, K. and Edamoto, K., Photoelectron spectroscopy study of ammonia adsorption on ZnO(1010), Surf. Rev. Lett., 2002, vol. 9, pp. 717–722.

    Article  CAS  Google Scholar 

  12. Boccuzzi, F., Morterra, C., Scala, R., and Zecchina, A., Infrared spectrum of microcrystalline zinc oxide. Electronic and vibrational contributions under different temperature and environmental conditions, J. Chem. Soc., Faraday Trans., 1981, vol. 77, pp. 2059–2066.

    Article  CAS  Google Scholar 

  13. Keyes, B.M., Gedvilas, L.M., Li, X., and Coutts, T.J., Infrared spectroscopy of polycrystalline ZnO and ZnO:N thin films, J. Cryst. Growth, 2005, vol. 281, pp. 297–302.

    Article  CAS  Google Scholar 

  14. Noei, H., Qiu, H., Wang, Y., Löffler, E., Wöll, C., and Muhler, M., The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy, Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 7092–7097.

    Article  CAS  Google Scholar 

  15. Krivetskii, V.V., Rumyantseva, M.N., and Gaskov, A.M., Chemical modification of nanocrystalline tin dioxide for selective gas sensors, Usp. Khim., 2013, vol. 82, no. 10, pp. 917–949.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Marikutsa.

Additional information

Original Russian Text © N.A. Vorob’eva, A.V. Marikutsa, M.N. Rumyantseva, V.F. Kozlovskii, D.G. Filatova, A.M. Gaskov, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 6, pp. 629–634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorob’eva, N.A., Marikutsa, A.V., Rumyantseva, M.N. et al. Effect of Ga and in doping on acid centers and oxygen chemisorption on the surface of nanocrystalline ZnO. Inorg Mater 52, 578–583 (2016). https://doi.org/10.1134/S0020168516060182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516060182

Keywords

Navigation