Skip to main content
Log in

Carbothermal synthesis of TiB2 powders of micron size

  • Published:
Inorganic Materials Aims and scope

Abstract

The characteristic details of the carbothermal synthesis of TiB2 powders from the stoichiometric mixture TiO2–H3BO3–C at temperatures lower 1700 K are investigated using thermal analysis (ТG—thermogravimetry and DSC—differential scanning calorimetry), as well as X-ray diffraction and scanning electron microscopy. In the temperature interval 300 K → 1673 K → 1273 K and at a heating rate of 10 K/min, the reaction in the powder mixture begins at approximately 1300 K and ends at 1470 K during cooling. After 3 h of isothermal synthesis at 1473 K, the TiB2 yield is more than 90%. The resulting products are hexagonal plate-like crystals 5–10 μm across with thickness of 3 to 4 μm. Kinetic analysis showed that in the temperature range of 1330 to 1673 K the TiB2 synthesis reaction is of the first-order, and the calculated activation energy of the process is 315 ± 24 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Moscow: Metallurgiya, 1991.

    Google Scholar 

  2. Ibrahiem, M.O., Foosnes, T., and Oye, H.A., Properties of pitch and furan-based TiB2–C cathodes, Light Metals: 2008 TMS Annual Meeting, New Orleans, 2008, vol. 4, pp. 1013–1018.

    Google Scholar 

  3. Li, J., Lu, X.-j., Lai, Y.-q., Li, Q.-y., and Liu, Y-x., Research progress in TiB2 wettable cathode for aluminum reduction, JOM, 2008, no. 8, pp. 32–37.

    Article  Google Scholar 

  4. Ivanov, V.V., Kirik, S.D., Shubin, A.A., Blokhina, I.A., Denisov, V.M., and Irtugo, L.A., Thermolysis of acidic aluminum chloride solution and its products, Ceram. Int., 2013, vol. 39, pp. 3843–3848.

    Article  CAS  Google Scholar 

  5. Ma Ai-dong and Jiang Ming-xue, The Thermodynamic Analysis on the system of TiO2–B2O3—C, Bull. Chin. Ceram. Soc., 2008, vol. 27, no. 5, pp. 957–962.

  6. Espenschied, H., US Patent 2 973 247, 1961.

    Google Scholar 

  7. Welham, N.J., Mechanical enhancement of the carbothermic formation of TiB2, Metall. Mater. Trans. A, 2000, vol. 31, no. 1, pp. 283–289.

    Article  Google Scholar 

  8. Kang, S.H. and Kim, D.J., Synthesis of nano-titanium diboride powders by carbothermal reduction, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 715–718.

    Article  CAS  Google Scholar 

  9. Kang, S.H., Kim, B.S., and Kim, D.J., The atmosphere effect on synthesis of TiB2 particles by carbothermal reduction, Mater. Sci. Forum, 2007, vols. 534–536, pp. 145–148.

    Article  Google Scholar 

  10. Baca, L and Stelzer, N., Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors, J. Eur. Ceram. Soc., 2008, vol. 28, no. 5, pp. 907–911.

    Article  CAS  Google Scholar 

  11. Shahbahrami, B., Golestani Fard, F., and Sedghi, A., The effect of processing parameters in the carbothermal synthesis of titanium diboride powder, Adv. Powder Technol., 2012, vol. 23, pp. 234–238.

    Article  CAS  Google Scholar 

  12. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya Entsiklopediya, 1988–1995.

  13. Sevim, F., Demir, F., Bilen, M., and Okur, H., Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data, Korean J. Chem., 2006, vol. 23, no. 5, pp. 736–740.

    Article  CAS  Google Scholar 

  14. Kutsev, V.S. and Ormont, B.F., Phase equilibria in high-temperature carbon reduction of TiO2, Zh. Fiz. Khim., 1957, vol. 31, p. 1866–1870.

    CAS  Google Scholar 

  15. Vodop’yanov, A.G., Baranov, S.V., and Kozhevnikov, G.N., Role of the gas phase in TiO2–carbon interaction, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 6, pp. 991–995.

    Google Scholar 

  16. Berger, L.-M., Gruner, W., Langholf, E., and Stolle, S., On the mechanism of carbothermal reduction processes of TiO2 and ZrO2, Int. J. Refract. Met. Hard Mater., 1999, vol. 17, pp. 235–243.

    Article  CAS  Google Scholar 

  17. Berger, L.-M., Langholf, E., Jaenicke-Rößler, K., and Leitner, G., Mass spectrometric investigations on the carbothermal reduction of titanium dioxide, J. Mater. Sci. Lett., 1999, vol. 18, no. 17, pp. 1409–1412.

    Article  CAS  Google Scholar 

  18. Koc, R., Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/ carbon mixture, J. Mater. Sci., 1998, vol. 33, pp. 1049–1055.

    Article  CAS  Google Scholar 

  19. Afir, A., Achour, M., and Saoula, N., X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum, J. Mater. Sci., 1999, vol. 288, pp. 124–140.

    CAS  Google Scholar 

  20. Maitre, A. and Lefort, P., Carbon oxidation at high temperature during carbothermal reduction of titanium dioxide, Phys. Chem. Chem. Phys., 1999, vol. 1, pp. 2311–2318.

    Article  CAS  Google Scholar 

  21. Lefort, P., Maitre, A., and Tristant, P., Influence of the grain size on the reactivity of TiO/C mixtures, J. Alloys Compd., 2000, vol. 302, pp. 287–298.

    Article  CAS  Google Scholar 

  22. Jin Yun-xue, Wang Hong-wei, Zeng Song-yan, and Zhang Ei-lin, Formation and Growth Mechanism of TiC Crystal in TiCp/Ti Composites, Trans. Nonferrous Met. Soc. China, 2002, vol. 12, no. 6, pp. 1158–1163.

    CAS  Google Scholar 

  23. Vallauri, D., Atias Adrian, I.C., and Chrysanthou, A., TiC–TiB2 composites: a review of phase relationships, processing and properties, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 1697–1713.

    Article  CAS  Google Scholar 

  24. Brown, M.E., Introduction to Thermal Analysis. Techniques and Applications, Kluwer, 2001.

    Google Scholar 

  25. Moukhina, E., Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments, J. Therm. Anal. Calorim, 2012. doi 10.1007/s10973-012-2406-3

  26. Vyazovkin, S., Burnham, A.K., Criado, J.M., and Perez-Maqueda, L.A., ICTAC Kinetic Committee recommendations for performing kinetic computations on thermal analysis data, Thermodin. Acta, 2011, vol. 520, pp. 1–19.

    Article  CAS  Google Scholar 

  27. Blokhina, I.A. and Ivanov, V.V., Kinetic analysis of TiB2 powders oxidation in the air, J. Therm. Anal. Calorim., 2015, vol. 119, no. 1, pp. 123–130.

    Article  CAS  Google Scholar 

  28. Netzsch Thermokinetics Software Manual, 2007.

  29. Tristant, P. and Lefort, P., Approche cinétique de la réduction carbothermique du dioxyde de titane, J. Alloys Compd., 1993, vol. 196, pp. 137–144.

    Article  CAS  Google Scholar 

  30. Weimer, A.W., Moore, W.G., Roach, R.P., Hitt, J.E., Dixit, R.S., and Pratsinis, S.E., Kinetics of carbothermal reduction synthesis of boron carbide, J. Am. Ceram. Soc., 1992, vol. 75, no. 9, pp. 2509–2514.

    Article  CAS  Google Scholar 

  31. Dacic, B.Z., Jokanovic, V., Jokanovic, B., and Dramicanin, M.D., Thermodynamics of gas phase carbothermic reduction of boron-anhydride, J. Alloys Compd., 2006, vol. 413, pp. 198–205.

    Article  CAS  Google Scholar 

  32. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1997, p. 543.

    Google Scholar 

  33. The Oxide Handbook, Samsonov, G.V., Ed., New York: Plenum, 1973, p. 524.

  34. Ivanov, V.V., Blokhina, I.A., and Kirik, S.D., Hightemperature oxidation kinetics of TiB2 powders in air, Oxid. Met., 2014, vol. 82, no. 1, pp. 71–84.

    Article  CAS  Google Scholar 

  35. Jiang, Z. and Rhine, W.E., Preparation of titanium diboride from the borothermic reduction of TiO2, TiOx(OH)y, or Ti(O-n-Bu)4-derived polymers, J. Eur. Ceram. Soc., 2003, vol. 12, pp. 403–411.

    Google Scholar 

  36. Grey, I.E., Li, Cr., and MacRae, C.M., Boron incorporation into rutile: phase equilibria and structural consideration, J. Solid State Chem., 1996, vol. 127, no. 2, pp. 240–247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Blokhina.

Additional information

Published in Russian Neorganicheskie Materialy, 2016, Vol. 52, No. 6, pp. 601–608.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhina, I.A., Ivanov, V.V., Kirik, S.D. et al. Carbothermal synthesis of TiB2 powders of micron size. Inorg Mater 52, 550–557 (2016). https://doi.org/10.1134/S0020168516060017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516060017

Keywords

Navigation