Skip to main content
Log in

New medium-temperature proton electrolytes based on CsH2PO4 and silicophosphate matrices

  • Published:
Inorganic Materials Aims and scope

Abstract

Silicophosphate gels ranging widely in P2O5 content and specific surface area have been synthesized by a sol-gel process. We have demonstrated the possibility of producing medium-temperature high-conductivity systems based on silicophosphate matrices and CsH2PO4. The thermal, structural, and transport properties of composite proton electrolytes have been investigated. The results indicate that the electrical conductivity of the composites based on matrices with Si : P = 1 : 0.5 increases by up to three and half or four orders of magnitude and that their proton conductivity is ∼10−3 to 3 × 10−2 S/cm at temperatures from 90 to 220°C and a water vapor content of ≃0.6–1 mol % in air. The additive suppresses the superionic phase transition of CsH2PO4. The increase in conductivity at low contents of the heterogeneous component is due to both CsH2PO4 dispersion and the presence of protonated centers on the matrix surface. When the mole fraction of the additive exceeds 0.3, the composites contain CsH5(PO4)2, a compound with a lower thermal stability, which is responsible for their high conductivity in a limited temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsunaga, H. and Itoh, K., X-ray structure study of ferroelectric cesium hydrogen phosphate at room temperature, Jpn. J. Phys. Soc., 1980, vol. 486, pp. 2011–2014.

    Article  Google Scholar 

  2. Uesu, Y. and Kobayashi, J., Crystal structure and ferroelectricity of cesium dihydrogen phosphate CsH2PO4, Phys. Status Solidi A, 1976, vol. 34, no. 2, pp. 475–481.

    Article  CAS  Google Scholar 

  3. Preisinger, A., Mereiter, K., and Bronowska, W., The phase transition of CsH2PO4 (CDP) at 505 K, Mater. Sci. Forum, 1994, vols. 166–169, pp. 511–516.

    Article  Google Scholar 

  4. Baranov, A.I., Khiznichenko, V.P., Sandler, V.A., and Shuvalov, L.A., Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4, Ferroelectrics, 1988, vol. 81, pp. 1147–1150.

    Google Scholar 

  5. Boysen, D.A., Uda, T., Chisholm, C.R.I., and Haile, S.M., High-performance solid acid fuel cells through humidity stabilization, Science, 2004, vol. 303, pp. 68–70.

    Article  CAS  Google Scholar 

  6. Uda, T., Boysen, D.A., Chisholm, C.R.I., and Haile, S.M., Alcohol fuel cells at optimal temperatures, Electrochem. Solid State Lett., 2006, vol. 9, pp. A261–A264.

    Article  CAS  Google Scholar 

  7. Uda, T. and Haile, S.M., Thin-membrane solid-acid fuel cell, Electrochem. Solid-State Lett., 2005, vol. 8, no. 5, pp. A245–A246.

    Article  CAS  Google Scholar 

  8. Boysen, D.A. and Haile, S.M., High-temperature behavior of CsH2PO4 under both ambient and high pressure conditions, Chem. Mater., 2003, vol. 15, pp. 727–736.

    Article  CAS  Google Scholar 

  9. Otomo, J., Minagawa, N., Wen, C-J., Eguchi, K., and Takahashi, H., Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres, J. Solid State Ionics, 2003, vol. 156, pp. 357–369.

    Article  CAS  Google Scholar 

  10. Ponomareva, V.G. and Shutova, E.S., Moderate-temperature protonic conductors based on CsH2PO4 and modified silicon dioxide, Russ. J. Electrochem., 2007, vol. 43, no. 5, pp. 521–527.

    Article  CAS  Google Scholar 

  11. Ikeda, A. and Haile, S.M., The thermodynamics and kinetics of the dehydration of CsH2PO4 studied in the presence of SiO2, Solid State Ionics, 2012, vol. 213, pp. 63–71.

    Article  CAS  Google Scholar 

  12. Ponomareva, V.G. and Shutova, E.S., High-temperature behavior of CsH2PO4 and CsH2PO4-SiO2 composites, J. Solid State Ionics, 2007, vol. 178, pp. 729–734.

    Article  CAS  Google Scholar 

  13. Ponomareva, V.G. and Bagryantseva, I.N., Superprotonic CsH2PO4-CsHSO4 solid solutions, Inorg. Mater., 2012, vol. 48, no. 2, pp. 187–194.

    Article  CAS  Google Scholar 

  14. Martsinkevich, V.V. and Ponomareva, V.G., Double salts Cs1 − x MxH2PO4 (M = Na, K, Rb) as proton conductors, Solid State Ionics, 2012, vol. 225, pp. 236–240.

    Article  CAS  Google Scholar 

  15. Nakamoto, N., Matsuda, A., Tadanaga, K., Minami, T., and Tatsumisago, M., Medium temperature operation of fuel cells using thermally stable proton-conducting composite sheets composed of phosphosilicate gel and polyimide, J. Power Sources, 2004, vol. 138, nos. 1–2, pp. 51–55.

    Article  CAS  Google Scholar 

  16. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Solid Composite Electrolytes), Sib. Otd. Ross. Akad. Nauk, 2008.

    Google Scholar 

  17. Yaroslavtsev, A.B., Composite ion conductors: from inorganic composites to hybrid membranes, Usp. Khim., 2009, vol. 78, no. 11, pp. 1094–1112.

    Article  Google Scholar 

  18. Yaroslavtsev, A.B., Ion conductivity of composite materials on the base of solid electrolytes and ionexchange membranes, Inorg. Mater, 2012, vol. 48, no. 13, pp. 1193–1209.

    Article  CAS  Google Scholar 

  19. Safronova, E.Yu. and Yaroslavtsev, A.B., Relationship between properties of hybrid ion-exchange membranes and dopant nature, Solid State Ionics, 2013, vol. 251, pp. 23–27.

    Article  CAS  Google Scholar 

  20. Ponomareva, V.G., Lavrova, G.V., Malakhov, V.V., and Dovlitova, L.S., Dissolution kinetics of CsHSO4 and CsHSO4/SiO2 composites in aqueous solutions, Inorg. Mater., 2006, vol. 42, no. 10, pp. 1115–1120.

    Article  CAS  Google Scholar 

  21. Matsui, T., Kukino, T., Kikuchi, R., and Eguchi, K., An intermediate temperature proton-conducting electrolyte based on a CsH2PO4/SiP2O7 composite, Electrochem. Solid-State Lett., 2005, vol. 8, no. 5, pp. A256–A258.

    Article  CAS  Google Scholar 

  22. Ponomareva, V.G., Shutova, E.S., and Lavrova, G.V., Electrical conductivity and thermal stability of (1 − x)CsH2PO4/x SiPyOz (x = 0.2–0.7) composites, Inorg. Mater., 2008, vol. 44, no. 9, pp. 1009–1014.

    Article  CAS  Google Scholar 

  23. Matsui, T., Kukino, T., Kikuchi, R., and Eguchi, K., Intermediate-temperature fuel cell employing CsH2PO4/SiP2O7-based composite electrolytes, J. Electrochem. Soc., 2006, vol. 153, no. 2, pp. A339–A342.

    Article  CAS  Google Scholar 

  24. Bocchetta, P., Chiavarotti, G., Masi, R., Sunseri, C., and Quarto, F.Di, nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures, Electrochem. Commun., 2004, vol. 6, pp. 923–928.

    Article  CAS  Google Scholar 

  25. Bocchetta, P., Ferraro, R., and Di Quarto, F., Advances in anodic alumina membranes thin film fuel cell: CsH2PO4 pore-filler as proton conductor at room temperature, J. Power Sources, 2009, vol. 187, pp. 49–56.

    Article  CAS  Google Scholar 

  26. Tezuka, T., Tadanaga, K., Hayashi, A., and Tatsumisago, M., Preparation of proton conductive composites with CsHSO4/CsH2PO4 and phosphosilicate gel, Solid State Ionics, 2006, vol. 177, pp. 2463–2466.

    Article  CAS  Google Scholar 

  27. Lavrova, G.V., Burgina, E.B., Matvienko, A.A., and Ponomareva, V.G., Bulk and surface properties of ionic salt CsH5(PO4)2, Solid State Ionics, 2006, vol. 177, pp. 1117–1122.

    Article  CAS  Google Scholar 

  28. Stolyarova, I.A. and Filatova, M.F., Atomno-adsorbtsionnaya spektrometriya (Atomic Absorption Spectrometry), Leningrad: Nedra, 1981.

    Google Scholar 

  29. Ognina, V.A., Metody khimicheskogo analiza fosfatnykh rud (Chemical Analysis of Phosphate Ores), Morkovskaya, G.A., Ed., Moscow: Goskhimizdat, 1961.

  30. Tsvetkova, I.N., Shilova, O.A., Voronkov, M.G., Gomza, Yu.P., and Sukhoy, K.M., Sol-gel synthesis and investigation of proton-conducting hybrid organic-inorganic silicophosphate materials, Glass Phys. Chem., 2008, vol. 34, pp. 68–76.

    CAS  Google Scholar 

  31. Matsuda, A., Kanzaki, T., Katan, Y., Tatsumisago, M., and Minami, T., Proton conductivity and structure of phosphosilicate gels derived from tetraethoxysilane and phosphoric acid or triethylphosphate, Solid State Ionics, 2001, vol. 139, pp. 113–119.

    Article  CAS  Google Scholar 

  32. Nogami, M. and Abe, Y., Evidence of water-cooperative proton conduction in silica glasses, Phys. Rev. B: Solid State, 1977, vol. 55, pp. 12 108–12 113.

    Article  Google Scholar 

  33. Matsuda, A., Kanzaki, T., Tadanaga, K., Tatsumisago, M., and Minami, T., Proton conductivities of sol-gel derived phosphosilicate gels in medium temperature range with low humidity, Solid State Ionics, 2002, vols. 154–155, pp. 687–692.

    Article  Google Scholar 

  34. Matsui, T., Muroyama, H., Kikuchi, R., and Eguchi, K., Development of novel proton conductors consisting of solid acid/pyrophosphate composite for intermediatetemperature fuel cells, J. Jpn. Petrol. Inst., 2010, vol. 53, pp. 1–11.

    Article  CAS  Google Scholar 

  35. Burgina, E.B., Ponomareva, V.G., Baltakhinov, V.P., and Kostrovskii, V.G., Spectroscopic study of the structure of and proton conduction mechanism in CsHSO4 and CsHSO4/SiO2 Composites, Zh. Strukt. Khim., 2005, vol. 46, no. 4, pp. 630–640.

    Google Scholar 

  36. Ponomareva, V. and Lavrova, G., Controlling the proton transport properties of solid acids via structural and microstructural modification, J. Solid State Electrochem., 2011, vol. 15, pp. 213–221.

    CAS  Google Scholar 

  37. Uvarov, N.F., Ponomareva, V.G., and Lavrova, G.V., Composite solid electrolytes, Russ. J. Electrochem., 2010, vol. 46, pp. 722–733.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Ponomareva.

Additional information

Original Russian Text © V.G. Ponomareva, E.S. Shutova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 10, pp. 1135–1140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, V.G., Shutova, E.S. New medium-temperature proton electrolytes based on CsH2PO4 and silicophosphate matrices. Inorg Mater 50, 1050–1055 (2014). https://doi.org/10.1134/S0020168514100124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514100124

Keywords

Navigation