Skip to main content
Log in

Thermal Interaction of High-Temperature Melts with Liquids

  • REVIEW
  • Published:
High Temperature Aims and scope

Abstract

A review of experimental and computational-theoretical works devoted to the study of the interaction of high-temperature melts with liquids, which can lead to the release of mechanical energy (steam explosions), being a potential hazard for industrial facilities, primarily for nuclear power plants, is carried out. Both large-scale steam explosions involving tens of kilograms of melts and small-scale interactions of individual melt drops with liquid coolants are considered. The importance of the regime of unstable film boiling for determining the conditions for the initiation of a steam explosion is noted. Studies of the influence of the solidification of the melt surface on the thermal interaction of the melt with the coolant are analyzed. The role of melt-oxidation processes in the development of a steam explosion is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Witte, L.C. and Cox, J.E., Adv. Nucl. Sci. Technol., 1973, vol. 7, p. 329.

    Article  Google Scholar 

  2. Zyszkowsky, W., At. Energy Rev., 1978, vol. 16, no. 1, p. 3.

    Google Scholar 

  3. Corradini, M.L., Kim, B.J., and Oh, M.D., Prog. Nucl. Energy, 1988, vol. 22, no. 1, p. 1.

    Article  Google Scholar 

  4. Berthoud, G., Ann. Rev Fluid Mech., 2000, vol. 32, p. 573.

    Article  ADS  Google Scholar 

  5. Meignen, R., Picchi, S., Lamome, J., Raverdy, B., Escobar, S.C., and Nicaise, G., Nucl. Eng. Des., 2014, vol. 280, p. 511.

    Article  Google Scholar 

  6. Meignen, R., Raverdy, B., Picchi, S., and Lamome, J., Nucl. Eng. Des., 2014, vol. 280, p. 528.

    Article  Google Scholar 

  7. Meignen, R., Raverdy, B., Buck, M., et al., Ann. Nucl. Energy, 2014, vol. 74, p. 125.

    Article  Google Scholar 

  8. Shen, P., Zhou, W., Cassiaut-Lois, N., Journeau, C., Piluso, P., and Liao, Y., Ann. Nucl. Energy, 2018, vol. 121, p. 162.

    Article  Google Scholar 

  9. Stepanov, E.V., Physical aspects of the steam explosion phenomenon, Preprint of the Inst. At. Energy, Moscow, 1991, no. 5450/3.

  10. Efanov, A.D, Zagorul’ko, Yu.N, Remizov, O.V., Kozlov, F.A., Sorokin, A.P., and Bogatyrev, I.L., Therm. Eng.,1997, vol. 44, p. 625.

    Google Scholar 

  11. Melikhov, V.I., Melikhov, O.I., and Yakush, S.E., Gidrodinamika i teplofizika parovykh vzryvov (Hydrodynamics and Thermal Physics of Steam Explosions), Moscow: Inst. Probl. Mekh. Ross. Akad. Nauk, 2020.

  12. Kudinov, P., Grishchenko, D., Konovalenko, A., and Karbojian, A., Nucl. Eng. Des., 2017, vol. 314, p. 182.

    Article  Google Scholar 

  13. Beznosov, A.V. and Bokova, T.A., Oborudovanie energeticheskikh konturov s tyazhelymi zhidkometallicheskimi teplonositelyami v atomnoi energetike (Equipment for Power Circuits with Heavy Liquid Metal Coolants in the Nuclear Power Industry), Nizhny Novgorod: Nizhegorod. Gos. Tekh. Univ. im. R.E. Alekseeva, 2012.

  14. Kolev, N.I., Kerntechnik, 1993, vol. 58, no. 3, p. 147.

    Article  ADS  Google Scholar 

  15. Morita, K., Kondo, Sa., Tobita, Y., and Brear, D.J., Nucl. Eng. Des., 1999, vol. 189, p. 337.

    Article  Google Scholar 

  16. Melikhov, V.I., Melikhov, O.I., and Yakush, S.E., High Temp., 2007, vol. 45, p. 509.

    Article  Google Scholar 

  17. Corradini, M.L., Nucl. Sci. Eng., 1982, vol. 82, p. 429.

    Article  ADS  Google Scholar 

  18. Corradini, M.L., Nucl. Sci. Eng., 1984, vol. 86, p. 372.

    Article  ADS  Google Scholar 

  19. Yamano, N., Maruyama, Y., Kudo, T., Hidaka, A., and Sugimoto, J., Nucl. Eng. Des., 1995, vol. 155, p. 369.

    Article  Google Scholar 

  20. Moriyama, K., Yamano, N., Maruyama, Y., Kudo, T., and Sugimoto, J., ALPHA Visual Data Collection STX005-025: Melt Drop Steam Explosion Experiments, JAERI—Data/Code, 99-017, 1999.

  21. Magallon, D., Huhtiniemi, I., and Hohmann, H., Nucl. Eng. Des., 1999, vol. 189, p. 223.

    Article  Google Scholar 

  22. Magallon, D. and Huhtiniemi, I., Nucl. Eng. Des., 2001, vol. 204, p. 369.

    Article  Google Scholar 

  23. Huhtiniemi, I., Magallon, D., and Hohmann, H., Nucl. Eng. Des., 1999, vol. 189, p. 379.

    Article  Google Scholar 

  24. Huhtiniemi, I. and Magallon, D., Nucl. Eng. Des., 2001, vol. 204, p. 391.

    Article  Google Scholar 

  25. OECD/SERENA Project Report. Summary and Conclusions. NEA/CSNI/R(2014), 2015. https://www.oe-c-d-ne-a.org/upload/docs/applicati-on/ pdf/2020-01/csni-r2014-15.pdf.

  26. Song, J.H., Park, I.K., Chang, Y.J., Shin, Y.S., Kim, J.H., Min, B.T., Hong, S.W., and Kim, H.D., Nucl. Eng. Des., 2002, vol. 213, nos. 2–3, p. 97.

    Article  Google Scholar 

  27. Song, J.H., Park, I.K., Shin, Y.S., Kim, J.H., Hong, S.W., Min, B.T., and Kim, H.D., Nucl. Eng. Des., vol. 222, no. 1, p. 1.

  28. Song, J.H., Hong, S.W., Kim, J.S., et al., Nucl. Sci. Technol., 2003, vol. 40, no. 10, p. 783.

    Article  Google Scholar 

  29. Kim, J.H., Park, I.K., Hong, S.W., et al., Trans. Korean Nuclear Society Spring Meeting, Chuncheon, 2006, p. 25.

  30. Zagorul’ko, Yu.I., Zhmurin, V.G., Volov, A.N., and Kovalev, Yu.P., Thermal. Eng., 2008, vol. 55, no. 3, p. 235.

    ADS  Google Scholar 

  31. Zagorul’ko, Yu., Fragmentatsiya koriuma v teplonositelyakh (Fragmentation of Corium in Coolants), Moscow: Rosenergoatom, 2008, no. 8, p. 38.

  32. Kim, J.H., Min, B.T., Park, I.K., et al., Mech. Sci. Technol., 2008, vol. 22, p. 2245.

    Article  Google Scholar 

  33. Kim, J.H., Min, B.T., Park, I.K., et al., Nucl. Technol., 2010, vol. 169, p. 239. https://doi.org/10.13182/NT169-239

    Article  ADS  Google Scholar 

  34. Kim, J.H., Min, B.T., Park, I.K., et al., Nucl. Technol., 2011, vol. 176, p. 372. https://doi.org/10.13182/NT11-A13314

    Article  ADS  Google Scholar 

  35. Saito, M., Sato, K., and Imahori, S., ANL Proc.: National Heat Transfer Conference, 1988, p. 173.

  36. Epstein, M. and Fauske, H.K., Chem. Eng. Res. Des., 2001, vol. 79, no. 4, p. 453.

    Article  Google Scholar 

  37. Ricou, F.B. and Spalding, D.B., J. Fluid Mech., 1961, vol. 11, p. 21.

    Article  ADS  Google Scholar 

  38. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physical and Chemical Fluid Dynamics), Moscow: Gos. Izd. Fiz.-Mat. Lit, 1959.

  39. Taylor, G.I., in The Scientific Papers of Sir Geoffrey Ingram Taylor, Batchelor, G.K., Ed., Cambridge: Cambridge Univ. Press. 1963, vol. 3, p. 304.

    Google Scholar 

  40. Melikhov, O.I., Appl. Mech. Tech. Phys., 1995, vol. 36, no. 1, p. 91.

    Article  ADS  Google Scholar 

  41. Iwasawa, Y. and Abe, Y., Prog. Nucl. Energy, 2018, vol. 108, p. 188.

    Article  Google Scholar 

  42. Kudinov, P., Karbojian, A., Weimin, M., and Dinh, T.N., Nucl. Technol., 2010, vol. 170, p. 219.

    Article  ADS  Google Scholar 

  43. Manickam, L., Thakre, S., Ma, W., and Bechta, S., Proc. 10th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-10), Okinawa, 2014, p. 1.

  44. Manickam, L., Kudinov, P., Ma, W., Bechta, S., and Grishchenko, D., Nucl. Eng. Des., 2016, vol. 309, p. 265.

    Article  Google Scholar 

  45. Manickam, L., Bechta, S., and Ma, W., Int. J. Multiphase Flow, 2017, vol. 91, p. 262.

    Article  Google Scholar 

  46. Manickam, L., An Experimental Study on Melt Fragmentation, Oxidation and Steam Explosion During Fuel Coolant Interactions, Doctoral Thesis, Stockholm: R. Inst. Technol., 2018.

  47. Kim, H.T. and Bang, K.H., Proc. 11th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11), Gyeongju, 2016, p. 1.

  48. Bang, K.H. and Kim, H.T., Proc. 8th European Review Meeting on Severe Accident Research (ERMSAR-2017), Warsaw, 2017, p. 1.

  49. Bang, K.H., Kim, H.T., and Tan, V.D., Trans. Korean Nuclear Society Spring Meeting. 2018, p. 17.

  50. Bang, K.H., Kim, H.T., and Tan, V.D., Ann. Nucl. Energy, 2018, vol. 118, p. 336.

    Article  Google Scholar 

  51. Li, Y., Wang, W., Lin, M., Zhong, M., Zhou, Y., and Yang, Y., Sci. Technol. Nucl. Install., 2017, vol. 2017, p. 4576328.

    Google Scholar 

  52. Ye, Y., Chen, X., and Cheng, S., Ann. Nucl. Energy, 2020, vol. 148, p. 107705.

    Article  Google Scholar 

  53. Huang, W.L., Sa, R.Y., Zhou, D.N., et al., Nucl. Sci. Technol., 2015, vol. 26, p. 060601.

    Google Scholar 

  54. Huang, W., Zhou, D.N., Sa, R., and Jiang, H., Prog. Nucl. Energy, 2017, vol. 99, p. 1.

    Article  Google Scholar 

  55. Iwasawa, Y. and Abe, Y., Ann. Nucl. Energy, 2019, vol. 125, p. 231.

    Article  Google Scholar 

  56. Chen, J., Zhou, Y., Zhao, J., Cai, J., and Gong, H., Ann. Nucl. Energy, 2021, vol. 151, p. 107900.

    Article  Google Scholar 

  57. He, L., Liu, P., Zhang, X., Kuang, B., Hu, W., and Wei, L., Ann. Nucl. Energy, 2020, vol. 143, p. 107392.

    Article  Google Scholar 

  58. Matsuba, K., Kamiyama, K., Toyooka, J., Tobita, Y., Zuev, V.A., Kolodeshnikov, A.A., and Vasilyev, Y.S., Bull. JSME. Mech. Eng. Jю, 2016, vol. 3, no. 3, p. 1.

    Google Scholar 

  59. Matsuba, K., Isozaki, M., Kamiyama, K., and Tobita, Y., J. Nucl. Sci. Technol., 2016, vol. 53, no. 5, p. 707.

    Article  Google Scholar 

  60. Johnson, M., Journeau, C., Matsuba, K., Emura, Y., and Kamiyama, K., Ann. Nucl. Energy, 2021, vol. 151, p. 107881.

    Article  Google Scholar 

  61. Jung, W.H., Park, H.S., Moriyama, K., and Kim, M.H., Nucl. Eng. Des., 2019, vol. 344, p. 183.

    Article  Google Scholar 

  62. Saito, R., Abe, Y., and Yoshida, H., J. Nucl. Sci. Technol., 2014, vol. 51, no. 1, p. 64.

    Article  Google Scholar 

  63. Narushima, Y., Saito, S., Yoshida, H., and Abe, Y., J. Nucl. Sci. Technol., 2019, vol. 56, no. 12, p. 1157.

    Article  Google Scholar 

  64. Saito, S., Abe, Y., Kaneko, A., Kanagawa, T., Iwasawa, Y., Koyama, K., and Nariai, H., Proc. 24th Int. Conf. on Nuclear Engineering (ICONE24), Charlotte, 2016.

  65. Saito, S., Abe, Y., and Koyama, K., Nucl. Eng. Des., 2017, vol. 315, p. 128.

    Article  Google Scholar 

  66. Dullforce, T.E., Buchanan, D.J., and Perckover, R.S., J. Phys. D: Appl. Phys., 1976, vol. 9, no. 9, p. 1295.

    Article  ADS  Google Scholar 

  67. Nelson, L.S. and Duda, P.M., Nature, 1982, vol. 296, p. 844.

    Article  ADS  Google Scholar 

  68. Nelson, L.S., Nucl. Eng. Des., 1995, vol. 155, p. 413.

    Article  Google Scholar 

  69. Nelson, L.S., Brooks, P.W., Bonazza, R., Corradini, M.L., Hildal, K., and Bergstrom, T.H., Proc. Ninth Int. Ferroalloys Congress, 2005, p. 338.

  70. Ciccarelli, G. and Frost, D.L., Nucl. Eng. Des., 1994, vol. 146, p. 109.

    Article  Google Scholar 

  71. Chen, X., Luo, R., Yuen, W.W., and Theofanous, T.G., Nucl. Eng. Des., 1999, vol. 189, p. 163.

    Article  Google Scholar 

  72. Abe, Y., Nariai, H., and Hamada, Y., J. Nucl. Sci. Technol., 2002, vol. 39, p. 845.

    Article  Google Scholar 

  73. Takashima, T., Heat Transfer Res., 2008, vol. 37, p. 41.

    Article  Google Scholar 

  74. Kouraytem, N., Li, E.Q., and Thoroddsen, S.T., Phys. Rev. E, 2016, vol. 93, p. 063108.

    Article  ADS  Google Scholar 

  75. Park, H.S., Hansson, R.C., and Sehgal, B.R., Exp. Therm. Fluid Sci., 2005, vol. 29, p. 351.

    Article  Google Scholar 

  76. Hansson, R.C., Park, H.S., and Dinh, T.-N., Nucl. Technol., 2009, vol. 167, p. 223.

    Article  ADS  Google Scholar 

  77. Hansson, R.C., Park, H.S., and Dinh, T.-N., Exp. Therm. Fluid Sci., 2009, vol. 33, p. 754.

    Article  Google Scholar 

  78. Zambaux, J.A., Manickam, L., Meignen, R., Ma, W.M., Bechta, S., and Picchi, S., Ann. Nucl. Energy, 2018, vol. 119, p. 352.

    Article  Google Scholar 

  79. Manickam, L., Qiang, G., Ma, W., and Bechta, S., Exp. Heat Transfer, 2019, vol. 32, p. 251.

    Article  ADS  Google Scholar 

  80. Manickam, L., Guo, Q., Komlev, A., Ma, W., and Bechta, S., Nucl. Eng. Des., 2019, vol. 354, p. 110225.

    Article  Google Scholar 

  81. Manickam, L., An Experimental Study on Melt Fragmentation, Oxidation and Steam Explosion During Fuel Coolant Interaction, Doctoral Thesis, Stockholm, Sweden: R. Inst. Technol., 2018.

  82. Buchanan, D.J., J. Phys. D: Appl. Phys., 1974, vol. 7, no. 10, p. 1441.

    Article  ADS  Google Scholar 

  83. Buchanan, D.J., J. Phys. D: Appl. Phys., 1973, vol. 6, no. 15, p. 1762.

  84. Kim, B. and Corradini, M.L., Nucl. Sci. Eng. 1988, vol. 98, no. 2, p. 16.

  85. Bang, K.H. and Corradini, M.L., Nucl. Sci. Eng., 1991, vol. 108, no. 1, p. 88.

    Article  ADS  Google Scholar 

  86. Ciccarelli, G. and Frost, D., Nucl. Eng. Des., 1994, vol. 146, p. 109.

    Article  Google Scholar 

  87. Hansson, R., An Experimental Study on the Dynamics of a Single Droplet Vapor Explosion, Doctoral Thesis, Stockholm, Sweden: R. Inst. Technol., 2018.

  88. Ivochkin, Yu.P., Zeigarnik, Yu.A., and Kubrikov, K.G., Therm. Eng., 2018, vol. 65, no. 7, p. 462.

    Article  Google Scholar 

  89. Kazimi, M.S., Theoretical Studies of Some Aspects of Molten Fuel-Coolant Thermal Interactions, Doctoral Thesis, Cambridge: MIT, 1973.

  90. Motte, E.I., Film Boiling of Flowing Subcooled Liquids, M.S. Thesis, Berkeley: Univ. California, 1954.

  91. Motte, E.I. and Bromley, L.A., Ind. Eng. Chem., 1957, vol. 49, no. 11, p. 1921.

    Article  Google Scholar 

  92. Farahat, M.M.K., Transient-boiling heat transfer from spheres to sodium, Report ANL-7909, 1972.

  93. Farahat, M.M.K., Eggen, D.T., and Armstrong, D.R., Nucl. Sci. Eng., 1974, vol. 53.

  94. Zvirin, Y., Hewitt, G.R., and Kenning, D.B.R., Exp. Heat Transfer, 1990, vol. 3, p. 185.

    Article  ADS  Google Scholar 

  95. Honda, H., Takamatsu, H., and Yamashiro, H., Heat Transfer Jpn. Res., 1992, vol. 21, no. 8, p. 773.

    Google Scholar 

  96. Honda, H., Takamatsu, H., and Yamashiro, H., Heat Transfer Jpn. Res., 1995, vol. 24, no. 6, p. 517.

    Google Scholar 

  97. Liu, C. and Theofanous, T.G., Film boiling on spheres in single- and two-phase flows, Report DOE/ER/12933-3, DOE/ID-10499, 1996.

  98. Berthoud, G. and Gros d’Aillon, L., Int. J. Thermal Sci., 2009, vol. 48, p. 1728.

    Article  Google Scholar 

  99. Sher, I., Harari, R., Reshef, R., and Sher, E., Appl. Therm. Eng., 2012, vol. 36, p. 219.

    Article  Google Scholar 

  100. Ni, P., Wen, Z., Su, F., Huang, J., Liu, X., Lou, G., and Dou, R., Appl. Therm. Eng., 2020, vol. 166, 114630.

    Article  Google Scholar 

  101. Ivochkin, Yu.P., Doctoral (Eng.) Dissertation, Moscow: Moscow Power Eng. Inst., 2015.

  102. Glazkov, V.V., Zhilin, V.G., Zeigarnik, Yu.A., Ivochkin, Yu.P., Sinkevich, O.A., and Tsoi, V.R., Dokl. Phys., 2001, vol. 46, no. 1, p. 34.

    Article  ADS  Google Scholar 

  103. Grigor’ev, V.S., Zhilin, V.G., Zeigarnik, Yu.A., Ivochkin, Yu.P., Glazkov, V.V., and Sinkevich, O.A., High Temp., 2005, vol. 43, no. 1, p. 103.

    Article  Google Scholar 

  104. Glazkov, V.V., Grigor’ev, V.S., Zhilin, V.G., Zeigarnik, Yu.A., Ivochkin, Yu.P., Kubrikov, K.G., Medvetskaya, N.V., Oksman, A.A., and Sinkevich, O.A., High Temp., 2006, vol. 44, no. 6, p. 908.

    Article  Google Scholar 

  105. Zeigarnik, Yu.A., Ivochkin, Yu.P., Grigor’ev, V.S., and Oksman, A.A., High Temp., 2008, vol. 46, no. 5, p. 734.

    Article  Google Scholar 

  106. Zhilin, V.G., Zeigarnik, Yu.A., Ivochkin, Yu.P., Oksman, A.A., and Belov, K.I., High Temp., 2009, vol. 47, no. 6, 856.

    Article  Google Scholar 

  107. Belov, K.I., Ivochkin, Yu.P., and Puzina, Yu.Yu., Vestn. Mosk. Energ. Inst., 2010, no. 3, p. 44.

  108. Ivochkin, Yu.P., Vavilov, S.N., Zeigarnik, Yu.A., and Kubrikov, K.G., Thermophys. Aeromech., 2012, vol. 19, no. 4, p. 429.

    Article  ADS  Google Scholar 

  109. Ivochkin, Yu.P., Zeigarnik, Yu.A., Vavilov, S.N., and Kovalev, S.A., High Temp., 2013, vol. 51, no. 5, p. 690.

    Article  Google Scholar 

  110. Leksin, M.A., Yagov, V.V., and Varava, A.N., Vestn. Mosk. Energ. Inst., 2009, no. 2, p. 28.

  111. Zabirov, A.R., Leksin, M.A., and Yagov, V.V., Vestn. Mosk. Energ. Inst., 2015, no. 1, p. 51.

  112. Yagov, V.V., Zabirov, A.R., and Leksin, M.A., Therm. Eng., 2015, vol. 62, no. 11, p. 833.

    Article  Google Scholar 

  113. Zabirov, A.R., Yagov, V.V., Kaban’kov, O.N., Leksin, M.A., and Kanin, P.K., J. Eng. Phys. Thermophys., 2016, vol. 89, no. 6, p. 1487.

    Article  Google Scholar 

  114. Yagov, V.V., Leksin, M.A., Zabirov, A.R., and Denisov, M.A., Int. J. Heat Mass Transfer, 2016, vol. 100, p. 908.

    Article  Google Scholar 

  115. Yagov, V.V., Leksin, M.A., Zabirov, A.R., and Denisov, M.A., Int. J. Heat Mass Transfer, 2016, vol. 100, p. 918.

    Article  Google Scholar 

  116. Zabirov, A.R., Yagov, V.V., and Kanin, P.K., Tepl. Protsessy Tekh., 2017, vol. 9, no. 2, p. 50.

    Google Scholar 

  117. Yagov, V.V., Zabirov, A.R., Kanin, P.K., and Denisov, M.A., J. Eng. Phys. Thermophys., 2017, vol. 90, no. 2, p. 266.

    Article  Google Scholar 

  118. Yagov, V.V., Zabirov, A.R., Kabankov, O.N., and Minko, M.V., Int. J. Heat Mass Transfer, 2017, vol. 110, p. 219.

    Article  Google Scholar 

  119. Yagov, V.V., Zabirov, A.R., Kanin, P.K., and Leksin, M.A., Trudy Sed’moi Rossiiskoi natsional’noi konferentsii po teploobmenu (Proc. the Seventh Russian National Conference on Heat Transfer), Moscow, 2018, p. 561.

  120. Yagov, V.V., Zabirov, A.R., and Kanin, P.K., Int. J. Heat Mass Transfer, 2018, vol. 126, p. 823.

    Article  Google Scholar 

  121. Yagov, V.V., Therm. Eng., 2019, vol. 66, no. 11, p. 779.

    Article  Google Scholar 

  122. Dedov, A.V., Zabirov, A.R., Sliva, A.P., Fedorovich, S.D., and Yagov, V.V., High Temp., 2019, vol. 57, no. 1, p. 63.

    Article  Google Scholar 

  123. Zabirov, A., Yagov, V., Kanin, P., Ryzantcev, V., Vinogradov, M., and Molotova, I., Exp. Therm. Fluid Sci., 2020, vol. 118, p. 110130.

    Article  Google Scholar 

  124. Lexin, M.A., Yagov, V.V., Zabirov, A.R., Kanin, P.K., Vinogradov, M.M., and Molotova, I.A., High Temp., 2020, vol. 58, no. 3, p. 369.

    Article  Google Scholar 

  125. Yagov, V.V., Minko, K.B., and Zabirov, A.R., Int. J. Heat Mass Transfer, 2021, vol. 167, p. 120838.

    Article  Google Scholar 

  126. Honda, H., Makishi, O., and Yamashiro, H., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 3390.

    Article  Google Scholar 

  127. De Malmazet, E. and Berthoud, G., Int. J. Heat Mass Transfer, 2009, vol. 52, p. 4731.

    Article  Google Scholar 

  128. Berthoud, G., Le Belguet, A., and Zabiego, M., Exp. Therm. Fluid Sci., 2017, vol. 91, p. 117.

    Article  Google Scholar 

  129. De Malmazet, E., Proc. 18th Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), Portland, 2019.

  130. Sinkevich, O.A., High Temp., 2007, vol. 45, no. 2, p. 221.

    Article  Google Scholar 

  131. Sinkevich, O.A., Fluid Dyn., 2010, vol. 45, no. 5, p. 734.

    Article  ADS  Google Scholar 

  132. Sinkevich, O.A., Glazkov, V.V., and Kireeva, A.N., High Temp., 2012, vol. 50, no. 4, p. 517.

    Article  Google Scholar 

  133. Sinkevich, O.A., Glazkov, V.V., Ivochkin, Yu.P., et al., Int. J. Nonlinear Sci. Numer. Simul., 2013, vol. 14, no. 1, p. 1.

    Article  MathSciNet  Google Scholar 

  134. Sinkevich, O.A., J. Exp. Theor. Phys., 2015, vol. 121, p. 321.

    Article  ADS  Google Scholar 

  135. Sinkevich, O.A., High Temp., 2021, vol. 59, no. 1, p. 77.

    Article  Google Scholar 

  136. Zeigarnik, Yu.A., Ivochkin, Yu.P., Kubrikov, K.G., Sinkevich, O.A., and Teplyakov, I.O., Trudy Sed’moi Rossiiskoi natsional’noi konferentsii po teploobmenu (Proc. Seventh Russian National Conference on Heat Transfer), Moscow, 2018, p. 510.

  137. Bürger, M., Cho, S.H., Kim, D.S., Carachalios, C., Müller, K., and Fröhlich, G., Effect of solid crust on the hydrodynamic fragmentation of melt droplets, Report no. IKE 2 TF-74, Stuttgart: Inst. Kernenerg. Energiesyst. Univ. Stuttgart, 1985.

    Google Scholar 

  138. Bürger, M., Cho, S.H., Carachalios, C., Muller, K., Unger, H., and Jacobs, H., in Science and Technology of Fast Reactor Safety, London, 1986, p. 503.

    Google Scholar 

  139. Yang, J.W. and Bankoff, S.G., J. Heat Transfer, 1987, vol. 109, p. 226.

    Article  Google Scholar 

  140. Sugiyama, K., Sotome, F., and Ishikawa, M., Nucl. Eng. Des., 1999, vol. 189 P, p. 329.

  141. Li, H.X., Haraldsson, H.O., Dinh, T.N., Green, J.A., and Sehgal, B.R., Proc. 3rd Int. Conf. on Multiphase Flows (ICMF3), Lyon, 1998.

  142. Haraldsson, H.O., Li, H.X., Yang, Z.L., Dinh, T.N., and Sehgal, B.R., Heat Mass Transfer, 2001, vol. 37, p. 417.

    Article  ADS  Google Scholar 

  143. Nishimura, S., Kinoshita, I., Sugiyama, K., and Ueda, N., J. Nucl. Sci. Technol., 2002, vol. 39, p. 752.

    Article  Google Scholar 

  144. Nishimura, S., Kinoshita, I., Sugiyama, K., and Ueda, N., Nucl. Technol., 2005, vol. 149, p. 189.

    Article  ADS  Google Scholar 

  145. Nishimura, S., Sugiyama, K., Kinoshita, I., Itagaki, W., and Ueda, N., J. Nucl. Sci. Technol., 2010, vol. 47, p. 219.

    Article  Google Scholar 

  146. Zhang, Z.G., Sugiyama, K., Itagaki, W., Nishimura, S., Kinoshita, I., and Narabayashi, T., J. Nucl. Sci. Technol., 2009, vol. 46, p. 453.

    Article  Google Scholar 

  147. Zhang, Z.G. and Sugiyama, KJ. Nucl. Sci. Technol., 2010, vol. 47, p. 169.

    Article  Google Scholar 

  148. Zhang, Z.G. and Sugiyama, K., Nucl. Technol., 2011, vol. 175, p. 619.

    Article  ADS  Google Scholar 

  149. Zhang, Z.G. and Sugiyama, K., J. Nucl. Sci. Technol., 2012, vol. 49, p. 602.

    Article  Google Scholar 

  150. Epstein, M., J. Heat Transfer, 1977, vol. 99, p. 527.

    Article  Google Scholar 

  151. Cooper, F. and Dienes, J., Nucl. Sci. Eng., 1978, vol. 68, p. 308.

    Article  ADS  Google Scholar 

  152. Uršič, M. and Leskovar, M., Proc. Int. Conf. “Nuclear Energy for New Europe 2009,” Bled, 2009.

  153. Uršič, M., Leskovar, M., and Mavko, B., J. Eng. Gas Turbines Power, 2010, vol. 132, no. 7, p. 072901.

    Article  Google Scholar 

  154. Ursic, M., Leskovar, M., and Mavko, B., Nucl. Eng. Des., 2011, vol. 241, p. 1206.

    Article  Google Scholar 

  155. Ursic, M., Leskovar, M., and Mavko, B., Nucl. Eng. Des., 2012, vol. 246, p. 163.

    Article  Google Scholar 

  156. Ursic, M. and Leskovar, M., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 5350.

    Article  Google Scholar 

  157. Ursic, M., Leskovar, M., Burger, M., and Buck, M., Int. J. Heat Mass Transfer, 2014, vol. 76, p. 90.

    Article  Google Scholar 

  158. Ursic, M., Leskovar, M., and Meignen, R., Ann. Nucl. Energy, 2015, vol. 78, p. 130.

    Article  Google Scholar 

  159. Langford, D., Int. J. Heat Mass Transfer, 1966, vol. 9, no. 8, p. 827.

    Article  Google Scholar 

  160. Schins, H. and Lamain, L., Nucl. Eng. Des., 1984, vol. 80, no. 1, p. 19.

    Article  Google Scholar 

  161. Cronenberg, A.W., Chawla, T.C., and Fauske, H.K., Nucl. Eng. Des., 1974, vol. 30, no. 3, p. 433.

    Article  Google Scholar 

  162. Corradini, M. and Todreas, N.E., Nucl. Eng. Des., 1979, vol. 53, no. 1, p. 105.

    Article  Google Scholar 

  163. Cronenberg, A.W., Nucl. Eng. Des., 1976, vol. 36, no. 2, p. 261.

    Article  Google Scholar 

  164. Zeigarnik, Yu.A., Ivochkin, Yu.P., and Korol’, E.Z., High Temp., 2004, vol. 42, no. 3, p. 497.

    Article  Google Scholar 

  165. Dombrovsky, L.A., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 3832.

    Article  Google Scholar 

  166. Dombrovsky, L.A. and Dinh, T.N., Nucl. Eng. Des., 2008, vol. 238, p. 1421.

    Article  Google Scholar 

  167. Dombrovsky, L.A., Int. J. Heat Mass Transfer, 2017, vol. 107, p. 432.

    Article  Google Scholar 

  168. Meignen, R., Picchi, S., Lamome, J., Raverdy, B., Castrillon Escobar, S., and Nicaise, G., Nucl. Eng. Des., 2014, vol. 280, p. 511.

    Article  Google Scholar 

  169. Theofanous, T.G., Chen, X., Di Piazza, P., Epstein, M., and Fauske, H.K., Phys. Fluids, 1994, vol. 6, p. 3513.

    Article  ADS  Google Scholar 

  170. Cho, D.H., Armstrong, D.R., Gunther, W.H., and Basu, S., Proc. OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions, NEA/CSNI/R(97)26, Part II, Tokai-Mura, 1997, p. 595.

  171. Cho, D.H., Armstrong, D.R., Gunther, W.H., and Basu, S., Proc. 6th Int. Conf. on Nuclear Engineering (ICONE-6), San Diego, 1998.

  172. Cho, D.H., Armstrong, D.R., and Gunther, W.H., Experiments on interactions between zirconium-containing melt and water, NUREG/CR-5372, 1998.

  173. Epstein, M. and Fauske, H.K., Nucl. Eng. Des., 1994, vol. 146 P, p. 147.

  174. Epstein, M., Fauske, H.K., and Theofanous, T.G., Nucl. Eng. Des., 2000, vol. 201, p. 71.

    Article  Google Scholar 

  175. Corradini, M.L., Farahani, A., and Uludogan, A., Proc. Multidisciplinary International Seminar on Intense Multiphase Interactions, Santa Barbara, 1995, p. 256.

  176. Melikhov, O.I., Melikhov, V.I., Rtishchev, N.A., and Tarasov, A.E., High Temp., 2016, vol. 54, no. 4, p. 526.

    Article  Google Scholar 

  177. Loisel, V., Zambaux, J.-A., Hadj-Achour, M., Picchi, S., Goidreau, O., and Meignen, R., Nucl. Eng., 2019, vol. 346, p. 200.

    Article  Google Scholar 

  178. Tyrpekl, V. and Piluso, P., Ann. Nucl. Energy, 2012, vol. 46, p. 197.

    Article  Google Scholar 

  179. Tyrpekl, V., Piluso, P., Bakardjieva, S., Niznansky, D., Rehspringer, J.-L., Bezdicka, P., and Dugne, O., Ann. Nucl. Energy, 2015, vol. 75, p. 210.

    Article  Google Scholar 

  180. Tyrpekl, V., Piluso, P., Bakardjieva, S., and Dugne, O., Proc. Int. Meeting on Severe Accident Assessment and Management 2012: Lessons Learned from Fukushima Dai-ichi, San Diego, 2012.

  181. Tyrpekl, V., Piluso, P., Bakardjieva, S., and Dugne, O., Nucl. Technol., 2014, vol. 186, p. 229.

    Article  ADS  Google Scholar 

  182. Skobe, T. and Leskovar, M., Ann. Nucl. Energy, 2019, vol. 133, p. 359.

    Article  Google Scholar 

  183. Brayer, C., le Monnier, A., and Chikni, N., Ann. Nucl. Energy, 2020, vol. 147, p. 107613.

    Article  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project no. 20-18-50098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Melikhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melikhov, V.I., Melikhov, O.I. & Yakush, S.E. Thermal Interaction of High-Temperature Melts with Liquids. High Temp 60, 252–285 (2022). https://doi.org/10.1134/S0018151X22020274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22020274

Navigation