Skip to main content
Log in

A Method to Calculate Mixed MHD Convention in a Vertical Channel

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A method is proposed for the numerical simulation of heat transfer in a liquid metal flow in a vertical channel with consideration of the effects of a coplanar magnetic field and natural convection. It is demonstrated that, for a downward flow in a heated rectangular channel with an aspect ratio of 3 : 1, the counteraction of natural convection induces strong velocity and temperature fluctuations that can be taken into account with the proposed method. The first stage of the development of a modeling procedure deals with a numerical solution to a simplified, nonstationary 2D problem of a downward flow in a flat, slot-like channel with uniform heating of one or two walls. At the second stage, the predicted characteristics of the nonstationary 2D flow are used to calculate the averaged characteristics of a 3D flow. The numerical results are verified against experimental data obtained under conditions similar to those used in the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Wong, C.P.C., Salavy, J.F., Kim, Y., et al., Fusion Eng. Des., 2008, vol. 83, no. 7, p. 850.

    Article  Google Scholar 

  2. Kovalenko, V.G., Leshukov, A.Y., Tomilov, S.N., Razmerov, A.V., Strebkov, Y.S., Sviridenko, M.N., and Vitkovsky, I.V., Fusion Eng. Des., 2016, vol. 35, p. 142.

    Article  Google Scholar 

  3. Genin, L.G., Listratov, Ya.I., Sviridov, V.G., Zhilin, V.G., Ivochkin, Yu.P., Sviridov, E.V., and Razuvanov, N.G., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2003, no. 4, p. 35.

  4. Genin, L.G. and Sviridov, V.G., Gidrodinamika i teploobmen MGD-techenii v kanalakh (Hydrodynamics and Heat Transfer of MHD Flows in Channels), Moscow: Mosk. Energ. Inst., 2001.

    Google Scholar 

  5. Belyaev, I.A., Ivochkin, Yu.P., Listratov, Ya.I., Razuvanov, N.G., and Sviridov, V.G., High Temp., 2015, vol. 53, no. 5, p. 734.

    Article  Google Scholar 

  6. Poddubnyi, I.I., Pyatnitskaya, N.Yu., Razuvanov, N.G., Sviridov, V.G., Sviridov, E.V., Leshukov, A.Yu., Aleskovskii, K.V., and Obukhov, D.M., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2015, vol. 38, no. 3, p. 5.

    Google Scholar 

  7. Razuvanov, N.G., Sviridov, V.G., Sviridov, E.V., Belyaev, I.A., Pyatnitskaya, N.Y., and Zagorsky, V.S., Magnetohydrodynamics, 2016, vol. 52, no. 1, p. 17.

    Google Scholar 

  8. Kirillov, I.R., Obukhov, D.M., Genin, L.G., Sviridov, V.G., Razuvanov, N.G., Batenin, V.M., Belyaev, I.A., and Pyatnitskaya, N.Y., Fusion Eng. Des., 2016, vol. 104, p. 1.

    Article  Google Scholar 

  9. Branover, G.G. and Tsinober, A.B., Magnitnaya gidrodinamika neszhimaemykh sred (Magnetic Hydrodynamics of Incompressible Media), Moscow: Nauka, 1970.

    Google Scholar 

  10. Sommeria, J. and Moreau, R., J. Fluid Mech., 1982, vol. 118, p. 507.

    Article  ADS  Google Scholar 

  11. Smolentsev S. and Moreau R. Proceedings of the 2006 Summer Program, CTR, Stanford University, 2006, p. 419.

  12. Zimin, V.D. and Khripchenko, S.Yu., Magnetohydrodynamics, 1979, vol. 15, no. 4, p. 461.

  13. Sommeria, J., J. Fluid Mech., 1986, vol. 170, p. 139.

    Article  ADS  Google Scholar 

  14. Khripchenko, S.Yu., Vychisl. Mekh. Sploshnykh Sred, 2010, no. 3, p. 116.

  15. Liu, L. and Zikanov, O., Phys. Fluids, 2015, vol. 27, no. 4, 044103.

    Article  ADS  Google Scholar 

  16. Smolentsev, S., Vetcha, N., and Abdou, M., Fusion Eng. Des., 2013, vol. 88, no. 6, p. 607.

    Article  Google Scholar 

  17. Belyaev, I.A., Listratov, Y.I., Melnikov, I.A., Razuvanov, N.G., Sviridov, V.G., and Sviridov, E.V., Magnetohydrodynamics, 2016, vol. 52, no. 3, p. 287.

    Article  Google Scholar 

  18. Smolentsev, S.Yu., Magnetohydrodynamics, 1997, vol. 33, no. 1, p. 42.

    Google Scholar 

  19. Artemov, V.I., Yan’kov, G.G., Karpov, V.E., and Makarov, M.V., Teploenergetika, 2000, no. 7, p. 52.

  20. Kovalev, S.I., Murav’ev, E.V., and Sviridov, V.G., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 1990, no. 1, p. 32.

  21. Sudakov, A.V., Nadezhnost Bezop. Energ., 2008, no. 9, p. 10.

  22. Poddubnyi, I.I., Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Energy Inst., 2016.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 14-50-00124). We are grateful to the personnel of the Joint Supercomputer Center, an affiliate of the Federal Governmental Agency, Federal Scientific Center, Scientific Research Institute of System Development, Russian Academy of Sciences, where the calculations were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Belyaev.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, I.A., Razuvanov, N.G. & Sviridov, V.G. A Method to Calculate Mixed MHD Convention in a Vertical Channel. High Temp 56, 767–773 (2018). https://doi.org/10.1134/S0018151X18050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18050061

Keywords

Navigation