Skip to main content
Log in

Studies of the distribution functions of molecular nitrogen and its ion over the vibrational and rotational levels in the dc glow discharge and the microwave discharge in a nitrogen-hydrogen mixture by the emission spectroscopy technique

  • Review
  • Published:
High Temperature Aims and scope

Abstract

The positive column and the electrode zones of the DC glow discharge and the microwave discharge in nitrogen with the hydrogen additions are investigated. The spectral composition of the emission is determined, and the distribution functions over the vibrational-rotational levels of the electron-excited states of the nitrogen molecule and the nitrogen molecule ion are recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grishin, Yu.M., Kozlov, N.P., and Skryabin, A.S., High Temp., 2012, vol. 50, no. 4, p. 459.

    Article  Google Scholar 

  2. Sinkevich, O.A., Deputativa, L.V., Filinov, V.S., Fortov, V.E., Naumkin, V.N., Vladimirov, V.I., Meshakin, V.I., and Rykov, V.A., High Temp., 2012, vol. 50, no. 1, p. 1.

    Article  Google Scholar 

  3. Efremov, A.M., Yudina, A.V., and Svettsov, V.I., High Temp., 2012, vol. 50, no. 1, p. 30.

    Article  Google Scholar 

  4. Shekhter, A.B., Khimicheskie reaktsii v elektricheskom razryade (Chemical Reactions in the Electric Discharge), Leningrad: Chief Editorial Board of General Technical Literature, 1935.

    Google Scholar 

  5. Kondrat’ev, V.N., Chemical Kinetics of Gas Reactions, London: Pergamon, 1964.

    Google Scholar 

  6. Eremin, E.N., Elementy gazovoi elektrokhimii (Elements of Gas Electrochemistry), Moscow: Moscow State University, 1968.

    Google Scholar 

  7. Kondrat’ev, V.N. and Nikitin, E.E., Kinetika i mekhanizm gazofaznykh reaktsii (Kinetics and Mechanism of Gas-Phase Reactions), Moscow: Nauka, 1974.

    Google Scholar 

  8. Slovetskii, D.I., Mekhanizmy khimicheskikh reaktsii v neravnovesnoi plazme (Mechanisms of Chemical Reactions in Non-Equilibrium Plasmas), Moscow: Nauka, 1980.

    Google Scholar 

  9. Urbas A.D. Cand. Sci. (Chem.) Dissertation, Moscow: Institute of Petrochemical Synthesis of the Academy of Sciences of the Soviet Union, 1978.

    Google Scholar 

  10. Petitjean, L. and Ricard, A., J. Phys. D: Appl. Phys., 1984, vol. 17, p. 919.

    Article  ADS  Google Scholar 

  11. Berg, M., Budtz-Jorgensen, C.V., Reitz, H., Schweitz, K.O., Chevallier, J., Kringhoj, P., and Bottiger, J., Surf. Coat. Technol., 2000, vol. 124, p. 25.

    Article  Google Scholar 

  12. Mukherjee, S., Curr. Sci., 2002, vol. 83, no. 3, p. 263.

    Google Scholar 

  13. Karakan, M., Alsaran, A., and Celik, A., Mater. Charact., 2003, vol. 49, p. 241.

    Article  Google Scholar 

  14. Ueda, M., Gomes, G.F., Abramof, E., and Reuther, H., Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 206, p. 749.

    Article  ADS  Google Scholar 

  15. Wang, M.-J., Chang, Y.-I., and Poncin-Epaillard, F., Langmuir, 2003, vol. 19, p. 8325.

    Article  Google Scholar 

  16. Wrobel, A.M., Blaszczyk, I., Walkiewicz-Pietrzykowska, A., Tracz, A., Klemberg-Sapieha, J.E., Aoki, T., and Hatanaka, Y., J. Mater. Chem., 2003, vol. 13, p. 731.

    Article  Google Scholar 

  17. Siow, K.S., Britcher, L., Kumar, S., and Griesser, J.H., Plasma Process. Polym., 2006, vol. 3, p. 392.

    Article  Google Scholar 

  18. Voitsenya, V.S., Masuzaki, S., Motojima, O., Sagara, A., and Jacob, W., Probl. At. Sci. Technol., Ser.: Plasma Phys., 2006, vol. 12, no. 6, p. 141.

    Google Scholar 

  19. Ferreira, J.A. and Tabares, F.L., J. Phys.: Conf. Ser., 2008, vol. 100, p. 062026.

    Article  ADS  Google Scholar 

  20. Lepienski, C.M., Nascimento, F.C., Foerster, C.E., Da Silva, S.L.R., De Siqueira, M.C.J., and Alves, C., Mater. Sci. Eng., A, 2008, vol. 489, p. 201.

    Article  Google Scholar 

  21. Fridman, A., Plasma Chemistry, New York: Cambridge University Press, 2008.

    Book  Google Scholar 

  22. Diaz-Gullen, J.C., Campa-Castilla, A., Perez-Aguilar, S.I., Granda-Gutierrez, E.E., Garza-Gomez, A., Candelas-Ramirez, J., and Mendez-Mendez, R., Superficies Vacio, 2009, vol. 22, p. 4.

    Google Scholar 

  23. Baican, M., Paslaru, E., Hitruc, E.G., and Vasile, C., Dig. J. Nanomater. Biostruct., 2011, vol. 6, p. 1053.

    Google Scholar 

  24. Sarra-Bournet, C., Poulin, S., Piyakis, K., Turgeon, S., and Laroche, G., Surf. Interface Anal., 2010, vol. 42, p. 102.

    Google Scholar 

  25. Vasconncellos, Z.M.A., Lima, S.C., and Hinrichs, R., Rev. Mater., 2010, vol. 15, no. 2, p. 334.

    Google Scholar 

  26. Ganguli, B., Indian J. Pure Appl. Phys., 2011, vol. 49, p. 759.

    Article  ADS  Google Scholar 

  27. Morren, M., C. R. Hebd. Seances Acad. Sci., 1859, vol. 48, p. 342.

    Google Scholar 

  28. Perrot, M., C. R. Hebd. Seances Acad. Sci., 1859, vol. 49, p. 175.

    Google Scholar 

  29. Perrot, M.A., C. R. Hebd. Seances Acad. Sci., 1859, vol. 49, p. 204.

    Google Scholar 

  30. Chabrier, M., C. R. Hebd. Seances Acad. Sci., 1872, vol. 75, p. 484.

    Google Scholar 

  31. Donkin, W.F., Proc. R. Soc. London, 1872, vol. 21, p. 281.

    Article  Google Scholar 

  32. Thenard, P. and Thenard, A., C. R. Hebd. Seances Acad. Sci., 1873, vol. 76, p. 983.

    Google Scholar 

  33. Berthelot, M., C. R. Hebd. Seances Acad. Sci., 1876, vol. 82, p. 1360.

    Google Scholar 

  34. De Hemptinne, A., Z. Phys. Chem., 1897, vol. 22, p. 358.

    Google Scholar 

  35. Pohl, R., Ann. Phys. (Weinheim), 1906, vol. 21, p. 879.

    Article  ADS  Google Scholar 

  36. Davies, J.H., Z. Phys. Chem., 1908, vol. 64, p. 657.

    Google Scholar 

  37. Anderson, E.B., Z. Phys. A: Hadrons Nucl., 1922, vol. 10, no. 1, p. 54.

    Article  Google Scholar 

  38. Storch, H.H. and Olson, A.R., J. Am. Chem. Soc., 1923, vol. 45, p. 1605.

    Article  Google Scholar 

  39. Warbug, E. and Rump, W., Z. Phys. A: Hadrons Nucl., 1926, vol. 40, no. 8, p. 557.

    Article  Google Scholar 

  40. Caress, A. and Rideal, E.K., Proc. R. Soc. London, Ser. A, 1927, vol. 115, p. 684.

    Article  ADS  Google Scholar 

  41. Lewis, B., J. Am. Chem. Soc., 1928, vol. 50, no. 1, p. 27.

    Article  Google Scholar 

  42. Wendt, G.L. and Snyder, J.E., J. Am. Chem. Soc., 1928, vol. 59, p. 1288.

    Article  Google Scholar 

  43. McLennan, J.C. and Greenwood, G., Proc. R. Soc. London, Ser. A, 1928, vol. 120, p. 283.

    Article  ADS  Google Scholar 

  44. Kunsman, C.H., Phys. Rev., 1928, vol. 31, p. 307.

    Google Scholar 

  45. Brewer, A.K. and Westhaver, J.W., J. Phys. Chem., 1929, vol. 33, p. 883.

    Article  Google Scholar 

  46. König, A. and Wagner, O.H., Z. Phys. Chem. A, 1929, vol. 144, p. 213.

    Google Scholar 

  47. Brett, G.F., Proc. R. Soc. London, Ser. A, 1930, vol. 129, p. 319.

    Article  ADS  Google Scholar 

  48. Brewer, A.K. and Westhaver, J.W., J. Phys. Chem., 1930, vol. 34, p. 153.

    Article  Google Scholar 

  49. Steiner, W., Z. Elektrochem., 1930, vol. 36, no. 9, p. 807.

    Google Scholar 

  50. Alsfeld, M. and Wilhelmy, E., Ann. Phys. (Weinheim), 1931, vol. 400, no. 1, p. 89.

    Article  ADS  Google Scholar 

  51. Westhaver, J.W., J. Phys. Chem., 1932, vol. 37, p. 897.

    Article  Google Scholar 

  52. Dixon, J.K. and Steiner, W., Z. Phys. Chem., Abt. B, 1932, vol. 17, p. 337.

    Google Scholar 

  53. Schumb, W. and Goldman, L., Proc. Am. Acad. Arts Sci., 1934, vol. 69, no. 4, p. 169.

    Article  Google Scholar 

  54. Mochan, I.V., Roginskii, S.N., Fedorov, F.A., and Shekhter, A.B., Dokl. Akad. Nauk SSSR, 1934, vol. 2, no. 6, p. 56.

    Google Scholar 

  55. Foner, S.N. and Hudson, R.L., J. Chem. Phys., 1953, vol. 21, p. 1374.

    Article  ADS  Google Scholar 

  56. Varney, R.N., J. Chem. Phys., 1955, vol. 23, p. 866.

    Article  ADS  Google Scholar 

  57. Guenebaut, H., Parnetier, G., and Goudmand, P., C. R. Hebd. Seances Acad. Sci., 1960, vol. 251, p. 1480.

    Google Scholar 

  58. Foner, S.N. and Hudson, R.L., J. Chem. Phys., 1966, vol. 45, p. 40.

    Article  ADS  Google Scholar 

  59. Fehsenfeld, F.C., Schmeltenkopf, A.L., and Fergusson, E.E., J. Chem. Phys., 1967, vol. 46, p. 2802.

    Article  ADS  Google Scholar 

  60. Mal’tsev, A.N., Gurina, L.A., and Eremin, E.N., Zh. Fiz. Khim., 1968, vol. 42, p. 2334.

    Google Scholar 

  61. Eremin, E.N., Mal’tsev, A.N., and Belova, V.M., Zh. Fiz. Khim., 1969, vol. 43, p. 795.

    Google Scholar 

  62. Eremin, E.N., Mal’tsev, A.N., and Belova, V.M., Zh. Fiz. Khim., 1971, vol. 45, p. 370.

    Google Scholar 

  63. Varey, R.H., Smalley, J., Richards, P.H., Gozna, C.F., and Swift-Hook, D.T., J. Phys. D: Appl. Phys., 1971, vol. 4, p. 1520.

    Article  ADS  Google Scholar 

  64. Eremin, E.N., Mal’tsev, A.N., and Slyaduk, V.L., Zh. Fiz. Khim., 1971, vol. 45, p. 1135.

    Google Scholar 

  65. Syaduk, V.L. and Eremin, E.N., Zh. Fiz. Khim., 1973, vol. 47, p. 241.

    Google Scholar 

  66. Syaduk, V.L. and Eremin, E.N., Zh. Fiz. Khim., 1973, vol. 47, p. 242.

    Google Scholar 

  67. Lindinger, W., Albritton, D.L., Fehsenfeld, F.C., Schmeltenkopf, A.L., and Fergusson, E.E., J. Chem. Phys., 1975, vol. 62, p. 3549.

    Article  ADS  Google Scholar 

  68. Lindinger, W., Albritton, D.L., Fehsenfeld, F.C., Schmeltenkopf, A.L., and Fergusson, E.E., J. Chem. Phys., 1975, vol. 63, p. 2175.

    Article  ADS  Google Scholar 

  69. Wight, G.R., van der Viel, M.J., and Brion, G.E., J. Phys. B: At. Mol. Phys., 1977, vol. 10, p. 1863.

    Article  ADS  Google Scholar 

  70. Golubovskii, Yu.B. and Telezhko, V.M., Zh. Tekh. Fiz., 1984, vol. 54, no. 7, p. 1262.

    Google Scholar 

  71. Abramov, V.L., Zh. Prikl. Spektrosk., 1990, vol. 52, no. 6, p. 999.

    Google Scholar 

  72. Uyama, H. and Matsumoto, O., in Proceedings of the Tenth International Symposium on Plasma Chemistry (ISPC-10), Bochum, Germany, August 4–9, 1991, Bochum, 1991, sect. 2.3–10, p. 1.

    Google Scholar 

  73. Abramov, V.L. and Chernykh, N.V., in Materialy II mezhdunarodnogo simpoziuma po teoreticheskoi i prikladnoi plazmokhimii, Ivanovo, 1995 (Proceedings of the Second International Symposium on Theoretical and Applied Plasma Chemistry, Ivanovo, Russia, May 22–26, 1995), Ivanovo: Ivanovo State University of Chemistry and Technology, 1995, p. 85.

    Google Scholar 

  74. Amorim, J., Baravian, G., and Ricard, A., Plasma Chem. Plasma Process., 1995, vol. 15, p. 721.

    Article  Google Scholar 

  75. Amorim, J., Baravian, G., Bockel, S., Ricard, A., and Sultan, G., J. Phys. III, 1996, vol. 6, p. 1147.

    Google Scholar 

  76. Popa, S.D., Hochard, L., and Ricard, A., J. Phys. III, 1997, vol. 7, p. 1331.

    Google Scholar 

  77. Brovikova, I.N., Galiaskarov, E.G., Rybkin, V.V., and Bessarab, A.B., Teplofiz. Vys. Temp., 1998, vol. 36, no. 6, p. 865.

    Google Scholar 

  78. Popa, S.D., Chiru, P., and Ciobotaru, L., J. Phys. D: Appl. Phys., 1998, vol. 31, p. L53.

    Article  ADS  Google Scholar 

  79. Gomez, B.J., Bruhl, S.P., Feugeas, J.N., and Ricard, A., J. Phys. D: Appl. Phys., 1999, vol. 32, p. 1239.

    Article  ADS  Google Scholar 

  80. Yang, W.-D., Wang, P.-N., Liu, Z.-P., Mi, L., Chen, S.-C., and Li, F.-M., J. Phys. D: Appl. Phys., 2000, vol. 33, p. 3223.

    Article  ADS  Google Scholar 

  81. Brovikova, I.N. and Galiaskarov, E.G., in Materialy III mezhdunarodnogo simpoziuma po teoreticheckoi i prikladnoi plazmokhimii, Ivanovo, 2002 (Proceedings of the Third International Symposium on Theoretical and Applied Plasma Chemistry, Ivanovo, Russia, September 22—26, 2002), Ivanovo: Ivanovo State University of Chemistry and Technology, 2002, p. 85.

    Google Scholar 

  82. Sa, P.A., Guerra, V., Loureiro, J., and Sadeghi, N., in Proceedings of the 16th Europhysics Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG), Grenoble, France, July 14–18, 2002, Grenoble, 2002, p. 211.

    Google Scholar 

  83. Brovikova, I.N. and Galiaskarov, E.G., in Materialy III mezhdunarodnogo simpoziuma po teoreticheckoi i prikladnoi plazmokhimii, Ivanovo, 2002 (Proceedings of the Third International Symposium on Theoretical and Applied Plasma Chemistry, Ivanovo, Russia, September 22–26, 2002), Ivanovo: Ivanovo State University of Chemistry and Technology, 2002, p. 95.

    Google Scholar 

  84. Tahara, H., Ando, Y., and Yoshikawa, T., Mater. Sci. Forum., 2004, vols. 449–452, p. 373. Online available since 2004/Mar/15 at www.scientific.net.

    Article  Google Scholar 

  85. Tatarova, E., Dias, F.M., Gordiets, B., and Ferreira, C.M., Plasma Sources Sci. Technol., 2005, vol. 14, p. 19.

    Article  ADS  Google Scholar 

  86. Dvorak, P. and Janca, J., in Proceedings of the 28th International Conference on Phenomena in Ionized Gases (ICPIG), Prague, Czech Republic, July 15–20, 2007, Prague, 2007, p. 23.

    Google Scholar 

  87. Ricard, A., Henriques, J., Cousty, S., Villeger, S., and Amorin, J., Plasma Process. Polym., 2007, vol. 4, p. 5965.

    Article  Google Scholar 

  88. Hassouba, M.A. and Mehanna, E.A., Int. J. Phys. Sci., 2009, vol. 4, p. 713.

    Google Scholar 

  89. Lebedev, Yu.A., Mavlyudov, T.B., Shakhatov, V.A., and Epstein, I.L., High Temp., 2010, vol. 48, no. 3, p. 333.

    Article  Google Scholar 

  90. Filimonova, E. and Naidis, G., Publ. Astron. Obs. Belgrade, 2010, no. 89, p. 163.

    Google Scholar 

  91. Carrasco, E., Jimenez-Redondo, M., Herrero, V.J., and Tanarro, I., in Proceedings of the 30th International Conference on Phenomena in Ionized Gases (ICPIG), Belfast, Northern Ireland, United Kingdom, August 28–September 2, 2011, Belfast, 2011, p. 34.

    Google Scholar 

  92. Mazankova, V., Krcma, F., and Zednickova, P., in Proceedings of the 30th International Conference on Phenomena in Ionized Gases (ICPIG), Belfast, Northern Ireland, United Kingdom, August 28-September 2, 2011, Belfast, 2011, p. 46.

    Google Scholar 

  93. Shon, C.-H. and Makabe, T., IEEE Trans. Plasma Sci., 2004, vol. 32, no. 2, p. 390.

    Article  ADS  Google Scholar 

  94. Jovović, J., Epstein, I.L., Konjević, N., Lebedev, Yu.A., Šišović, N.M., and Tatarinov, A.V., Plasma Chem. Plasma Process., 2012, vol. 32, p. 1093.

    Article  Google Scholar 

  95. Mohamed, A.M., Rev. Roum. Phys., 1981, vol. 26, no. 2, p. 135.

    Google Scholar 

  96. Shakhatov, V.A. and Lebedev, Yu.A., High Energy Chem., 2008, vol. 42, no. 3, p. 170.

    Article  Google Scholar 

  97. Lebedev, Yu.A. and Shakhatov, V.A., in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of the Low-Temperature Plasma), Fortov, V.E., Ed., Volume IX-3: Optika nizkotemperaturnoi plazmy (Optics of the Low-Temperature Plasma), Ochkin, V.N., Ed., Moscow: Yanus-K, 2009, p. 73.

  98. Shakhatov, V.A. and Lebedev, Yu.A., High Temp., 2012, vol. 50, no. 5, p. 658.

    Article  Google Scholar 

  99. Lebedev, Yu.A., Solomakhin, P.V., and Shakhatov, V.A., Plasma Phys. Rep., 2007, vol. 33, no. 1, p. 157.

    Article  ADS  Google Scholar 

  100. Lebedev, Yu.A., Solomakhin, P.V., and Shakhatov, V.A., Plasma Phys. Rep., 2008, vol. 34, no. 7, p. 562.

    Article  ADS  Google Scholar 

  101. Piper, L.G., J. Chem. Phys., 1992, vol. 97, p. 270.

    Article  ADS  Google Scholar 

  102. Hack, W., Kurzke, H., Ottinger, Ch., and Wagner, H.Gg., Chem. Phys., 1988, vol. 126, p. 111.

    Article  Google Scholar 

  103. Dreyer, J.W., Perner, D., and Roy, C.R., J. Chem. Phys., 1974, vol. 61, p. 3164.

    Article  ADS  Google Scholar 

  104. Slanger, T.G., Wood, B.J., and Black, G., J. Photochem., 1973, vol. 2, p. 63.

    Article  Google Scholar 

  105. Meyer, J.A., Klosterboer, D.H., and Setser, D.W., J. Chem. Phys., 1971, vol. 55, p. 2084.

    Article  ADS  Google Scholar 

  106. Callear, A.B. and Wood, P.M., Trans. Faraday Soc., 1971, vol. 67, p. 272.

    Article  Google Scholar 

  107. Young, R.A., Black, G., and Slanger, T.G., J. Chem. Phys., 1969, vol. 50, p. 303.

    Article  ADS  Google Scholar 

  108. Meyer, A., Setser, D.W., and Stedman, D.H., J. Phys. Chem., 1970, vol. 74, p. 2238.

    Article  Google Scholar 

  109. Hovis, F.E. and Whitefield, P.D., Chem. Phys. Lett., 1987, vol. 138, p. 162.

    Article  ADS  Google Scholar 

  110. Ho, G.H. and Golde, M.F., J. Chem. Phys., 1991, vol. 95, p. 8866.

    Article  ADS  Google Scholar 

  111. Pancheshnyi, S.V., Starikovskaia, S.M., and Starikovskii, A.Yu., Chem. Phys., 2000, vol. 262, p. 349.

    Article  Google Scholar 

  112. Kuznetsova, L.A., Kuz’menko, N.E., Kuzyakov, Yu.Ya., and Plastinin, Yu.A., Veroyatnosti opticheskikh perekhodov dvukhatomnykh molekul (Probabilities of Optical Transitions of Diatomic Molecules), Moscow: Nauka, 1980.

    Google Scholar 

  113. Fiziko-khimicheskie protsessy v gazovoi dinamike. Spravochnik, tom 1: Fiziko-khimicheskaya kinetika i termodinamika (A Reference Book on Physicochemical Processes in Gas Dynamics: Volume 1. Physicochemical Kinetics and Thermodynamics), Chernii, G.G. and Losev, S.A., Eds., Moscow: Scientific Publishing Center of Mechanics, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shakhatov.

Additional information

Original Russian Text © V.A. Shakhatov, N.B. Mavlyudov, Yu.A. Lebedev, 2013, published in Teplofizika Vysokikh Temperatur, 2013, Vol. 51, No. 4, pp. 612–628.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhatov, V.A., Mavlyudov, N.B. & Lebedev, Y.A. Studies of the distribution functions of molecular nitrogen and its ion over the vibrational and rotational levels in the dc glow discharge and the microwave discharge in a nitrogen-hydrogen mixture by the emission spectroscopy technique. High Temp 51, 551–565 (2013). https://doi.org/10.1134/S0018151X13040226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X13040226

Keywords

Navigation