Skip to main content
Log in

An investigation of the optical-and-thermophysical and gasdynamic characteristics of femtosecond laser ablation of structural materials of the polymer series

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A description is made of the experimental-diagnostic module with femtosecond terawatt laser complex (τ0.5 ∼ 45–70 fs, λ = 266, 400, and 800 nm) and of the pioneering procedure of combined ultrahighspeed interferometry and interference microscopy (Michelson and Mach-Zehnder schemes) of the processes of interaction between ultrashort laser pulses and condensed media in vacuum. Results are given for the first time of the investigation of spectral-energy thresholds and rates of laser ablation of a number of solidstate media using elements of the polymer series (C2F4) n , (CH2O) n in the UV-NIR wavelength range of laser radiation in atmospheric conditions and in vacuum p ∼ 10−2 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sentis, M. and Utŭza, O., Lasers et technologies femtosecondes, Saint-Etienne: PU Saint-Etienne, 2005.

    Google Scholar 

  2. Ovsianikov, A., Passinger, S., Houbertz, R., et al., Three Dimensional Material Processing with Femtosecond Lasers, in Laser Ablation and Its Applications, Berlin: Springer, 2007, p. 121.

    Chapter  Google Scholar 

  3. Entsiklopediya nizkotemperaturnoi plazmy. Vvodnyi tom (v 4-kh knigakh) (Encyclopedia of Low-Temperature Plasma. Introductory Volume (in four books)), Fortov, V.E., Ed., Moscow: Nauka, 2000.

    Google Scholar 

  4. Nolte, S., Momma, C., Jacobs, H., et al., J. Opt. Soc. Am. B, 1997, vol. 14, no. 10, p. 2716.

    Article  ADS  Google Scholar 

  5. Gamaly, E.G., Rode, A.V., Luther-Davies, B., et al., Phys. Plasmas, 2002, vol. 9, no. 3, p. 949.

    Article  ADS  Google Scholar 

  6. Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., et al., Zh. Eksp. Teor. Fiz., 2008, vol. 134,no. 1, p. 5.

    Google Scholar 

  7. Ivanov, S.N., Loktionov, E.Yu., and Protasov, Yu.Yu., Teplofiz. Vys. Temp., 2010, vol. 48, no. 3, p. 361 (High Temp. (Engl. transl.), vol. 48, no. 3).

    Google Scholar 

  8. Mannion, P., Magee, J., Coyne, E., et al., Ablation Thresholds in Ultrafast Laser Micromachining of Common Metals in Air, in Opto-Ireland 2002: Optics and Photonics Technologies and Applications, Galway, Ireland: SPIE, 2003, p. 470.

    Google Scholar 

  9. Andrew, J.E., Dyer, P.E., Forster, D., et al., Appl. Phys. Lett., 1983, vol. 43, no. 8, p. 717.

    Article  ADS  Google Scholar 

  10. Srinivasan, R. and Braren, B., Chem. Rev., 1989, vol. 89, no. 6, p. 1303.

    Article  Google Scholar 

  11. Wang, Z.B., Hong, M.H., Lu, Y.F., et al., J. Appl. Phys., 2003, vol. 93, no. 10, p. 6375.

    Article  ADS  Google Scholar 

  12. Hashida, M., Fujita, M., Tsukamoto, M., et al., Femtosecond Laser Ablation of Metals: Precise Measurement and Analytical Model for Crater Profiles, in 3rd Int. Symp. on Laser Precision Microfabrication, Osaka: SPIE, 2003, p. 452.

    Google Scholar 

  13. Laser Ablation and Desorption. Experimental Methods in the Physical Sciences, Haglund, R.F. and Miller, J.C., Eds., London: Academic, 1998.

    Google Scholar 

  14. Sitnikov, D.S., Komarov, P.S., Ovchinnikov, A.V., et al., Zh. Tekh. Fiz., 2009, vol. 79, no. 4, p. 75 (Tech. Phys. (Engl. transl.), vol. 79, no. 4).

    Google Scholar 

  15. Womack, M., Vendan, M., and Molian, P., Appl. Surface Sci., 2004, vol. 221, nos. 1–4, p. 99.

    Article  ADS  Google Scholar 

  16. Hashida, M., Mishima, H., Tokita, S., et al., Opt. Express., 2009, vol. 17, no. 15, p. 13116.

    Article  ADS  Google Scholar 

  17. Kuper, S. and Stuke, M., Appl. Phys. Lett., 1989, vol. 54, no. 1, p. 4.

    Article  ADS  Google Scholar 

  18. Pettit, G.H. and Sauerbrey, R., Appl. Phys. A, 1993, vol. 56, no. 1, p. 51.

    Article  ADS  Google Scholar 

  19. Kumagai, H., Midorikawa, K., Toyoda, K., et al., Appl. Phys. Lett., 1994, vol. 65, no. 14, p. 1850.

    Article  ADS  Google Scholar 

  20. Papantonakis, M.R. and Haglund, Jr., R.F., Appl. Phys. A, 2004, vol. 79, no. 7, p. 1687.

    Article  ADS  Google Scholar 

  21. Skordoulis, C., Makropoulou, M., Bolovinos, A., et al., Lasers Medical Sci., 1997, vol. 12, no. 4, p. 313.

    Article  Google Scholar 

  22. Mitra, A. and Thareja, R.K., J. Mater. Sci., 1999, vol. 34, no. 3, p. 615.

    Article  Google Scholar 

  23. Costela, A., Garcia-Moreno, I., Florido, F., et al., J. Appl. Phys., 1995, vol. 77, no. 6, p. 2343.

    Article  ADS  Google Scholar 

  24. Sinko, J.E. and Gregory, D.A., Critical Fluence Effects in Laser Propulsion, in High-Power Laser Ablation VII, Taos, NM, USA: SPIE, 2008, p. 70051Z–11.

    Google Scholar 

  25. Dickinson, J.T., Shin, J.-J., Jiang, W., et al., J. Appl. Phys., 1993, vol. 74, no. 7, p. 4729.

    Article  ADS  Google Scholar 

  26. Fujii, T., Inoue, S., and Kannari, F., J. Appl. Phys., 1995, vol. 78, no. 5, p. 3401.

    Article  ADS  Google Scholar 

  27. Inoue, S., Fujii, T., Ueno, Y., et al., IEEE J. Select. Topics Quantum Electron., 1995, vol. 1, no. 3, p. 908.

    Article  Google Scholar 

  28. Sinko, J.E. and Schlecht, C.A., Reflection Fourier Transform Infrared Spectroscopy of Polymer Targets for CO2 Laser Ablation, in High-Power Laser Ablation VII, Taos, NM, USA: SPIE, 2008, p. 70052P–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Loktionov.

Additional information

Original Russian Text © E.Yu. Loktionov, A.V. Ovchinnikov, Yu.Yu. Protasov, D.S. Sitnikov, 2010, published in Teplofizika Vysokikh Temperatur, 2010, Vol. 48, No. 5, pp. 766–778.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loktionov, E.Y., Ovchinnikov, A.V., Protasov, Y.Y. et al. An investigation of the optical-and-thermophysical and gasdynamic characteristics of femtosecond laser ablation of structural materials of the polymer series. High Temp 48, 729–740 (2010). https://doi.org/10.1134/S0018151X10050159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X10050159

Keywords

Navigation