Skip to main content
Log in

Dynamics of radiationless transitions in large molecules: 3. Decay of vibration-phonon states

  • General Aspects of High Energy Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The statistical operator of the ensemble of high-frequency intramolecular vibrations associated with the phonon reservoir depends on the phonon occupation numbers under thermal equilibrium conditions. The eigenvalues of energy of statistically averaged vibration-phonon (VP) states are complex quantities. In the case of weak VP coupling, only one- and two-phonon transitions are taken into consideration for calculating the decay rate constant, in which the difference of phonon energies compensates for the difference in energy between the initial and final intramolecular states. Although the fast evolution of amplitudes of VP states is due to intramolecular redistribution of energy and is not reduced to exponential decay of the initial state, the imaginary components of the eigenvalues coincide with those predicted by Fermi’s golden rule. The relative contribution of two-phonon (combination) transitions compared with one-phonon transitions increases with an increase in the density of intramolecular states and temperature, becoming prevalent for large molecules at TD ≫ Δ0 (D = 100–200 K (70–140 cm−1) is the Debye temperature and Δ0∼10 cm−1 is the spacing between neighboring intramolecular vibration levels). When TD, the decay rate constant is KT 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benderskii, V.A., High Energy Chem., 2011, vol. 45, no. 6, p. 447.

    Article  CAS  Google Scholar 

  2. Benderskii, V.A., High Energy Chem., 2012, vol. 46, no. 1, p. 10.

    Article  CAS  Google Scholar 

  3. Benderskii, V.A., Fal’kovskii, L.A., and Kats, E.I., Pis’ma Zh. Eksp. Teor. Fiz., 2007, vol. 86, p. 221.

    CAS  Google Scholar 

  4. Benderskii, V.A., Gak, L.N., and Kats, E.I., Zh. Eksp. Teor. Fiz., 2009, vol. 136, p. 589.

    Google Scholar 

  5. Benderskii, V.A. and Kats, E.I., Pis’ma Zh. Eksp. Teor. Fiz., 2008, vol. 88, p. 387.

    Google Scholar 

  6. Oxtoby, D.W., Adv. Chem. Phys., 1981, vol. 47, p. 487.

    Article  CAS  Google Scholar 

  7. Ovchinnikov, A.A. and Ovchinnikova, M.Ya., Adv. Quantum Chem., 1982, vol. 16, p. 161.

    Article  CAS  Google Scholar 

  8. Harris, C.B., Smith, D.E., and Russell, D.J., Chem. Rev., 1990, vol. 90, p. 481.

    Article  CAS  Google Scholar 

  9. Kenkre, V.M., Tokmakoff, A., and Fayer, M.D., J. Chem. Phys., 1994, vol. 101, p. 10618.

    Article  CAS  Google Scholar 

  10. Feyer, M.D., Ultrafast Infrared and Raman Spectros-copy. New York: Marcel Dekker, 2001.

    Book  Google Scholar 

  11. Leitner, D.M., Adv. Chem. Phys., 2005, vol. 130B, p. 205.

    Article  Google Scholar 

  12. Kubo, R. and Toyazawa, Y., Progr. Theor. Phys., 1955, vol. 13, p. 160.

    Article  Google Scholar 

  13. Kubo, R., J. Phys. Soc. Jpn, 1957, vol. 12, p. 570.

    Article  Google Scholar 

  14. Akhiezer, A.I. and Peletminskii, S.V., Metody statisticheskoi fiziki (Methods of Statistical Physics), Moscow: Nauka, 1977.

    Google Scholar 

  15. Schroder, C., Vikhrenko, V., and Schwarzer, D., J. Phys. Chem. A, 2009, vol. 113, p. 14039.

    Article  Google Scholar 

  16. Jacob, C. and Reiher, M., J. Chem. Phys., 2009, vol. 130, p. 084106.

    Article  Google Scholar 

  17. Nitzan, A., Mukamel, S., and Jortner, J., J. Chem. Phys., 1975, vol. 63, p. 200.

    Article  CAS  Google Scholar 

  18. Benderskii, V.A., Makarov, D.E., and Wight, C.A., Chemical Dynamics at Low Temperatures, New York: Wiley, 1994.

    Google Scholar 

  19. Wu, T.M. and Loring, R.F., J. Chem. Phys., 1992, vol. 97, p. 8568.

    Article  CAS  Google Scholar 

  20. Moore, P. and Keyes, T., J. Chem. Phys., 1994, vol. 100, p. 6709.

    Article  CAS  Google Scholar 

  21. Cho, M., Fleming, G.R., Saito, S., Ohmine, I., and Stratt, R.M., J. Chem. Phys., 1994, vol. 100, p. 6672.

    Article  CAS  Google Scholar 

  22. Velsko, S. and Oxtoby, D.W., J. Chem. Phys., 1980, vol. 72, p. 487.

    Google Scholar 

  23. Bender, C.M. and Ling, K.M., Phys. Rev. D, 1970, vol. 1, p. 3808.

    Article  Google Scholar 

  24. Bender, C.M. and Wu, T.S., Phys. Rev. D, 1973, vol. 7, p. 1620.

    Article  Google Scholar 

  25. Egorov, S.A. and Skinner, J.L., J. Chem. Phys., 2000, vol. 112, p. 276.

    Google Scholar 

  26. Eyring, H., Lin, S.H., and Lin, S.M., Basic of Chemical Kinetics, New York: Wiley, 1987.

    Google Scholar 

  27. Stewart, G.M. and McDonald, J.D., J. Chem. Phys., 1983, vol. 78, p. 3907.

    Article  CAS  Google Scholar 

  28. Perry, D.S., J. Chem. Phys., 1993, vol. 98, p. 6665.

    Article  CAS  Google Scholar 

  29. Leitner, D.M. and Wolynes, P.G., J. Phys. Chem. A, 1997, vol. 102, p. 541.

    Article  Google Scholar 

  30. Cheatum, C.M., Heckscher, M.M., Bingemann, D., and Crim, F.F., J. Chem. Phys., 2001, vol. 115, p. 1086.

    Article  Google Scholar 

  31. Papenbrock, T. and Weidenmuller, H.A., Rev. Mod. Phys., 2007, vol. 79, p. 997.

    Article  Google Scholar 

  32. Shelby, R.M., Harris, C.B., and Cornelius, P.A., J. Chem. Phys., 1979, vol. 70, p. 34.

    Article  CAS  Google Scholar 

  33. Lin, Z., Keifer, P., and Rubtsov, I.V., J. Phys. Chem., vol. 115, p. 5347.

  34. Abragam, A. and Bleney, B., Electron Paramagnetic Resonance of Transition Ions, Oxford: Clarendon, 1970.

    Google Scholar 

  35. Silbey, R. and Trommsdorff, H.P., Chem. Phys. Lett., 1990, vol. 165, p. 540.

    Article  CAS  Google Scholar 

  36. Bogolyubov, N.N., Izbrannye trudy (Selected Works), Kiev: Naukova Dumka, 1971, vol. 3.

    Google Scholar 

  37. Mukamel, S., Chem. Phys., 1978, vol. 31, p. 327.

    Article  CAS  Google Scholar 

  38. Mukamel, S., Principles of Nonlinear Optical Spectroscopy, Oxford: Oxford Univ. Press, 1995.

    Google Scholar 

  39. Habenicht, B.F., Kamisaka, H., Yamashita, K., and Preshdo, O.V., Nanoletters, 2007, vol. 7, p. 3260.

    Article  CAS  Google Scholar 

  40. Habenicht, B.F., Kalugin, O.N., and Preshdo, O.V., Nanoletters, 2008, vol. 8, p. 2516.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Benderskii.

Additional information

Original Russian Text © V.A. Benderskii, 2012, published in Khimiya Vysokikh Energii, 2012, Vol. 46, No. 5, pp. 347–358.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benderskii, V.A. Dynamics of radiationless transitions in large molecules: 3. Decay of vibration-phonon states. High Energy Chem 46, 297–308 (2012). https://doi.org/10.1134/S0018143912050025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143912050025

Keywords

Navigation