Skip to main content
Log in

Alpine-type tectonics in the Paleoproterozoic Lapland-Kola Orogen

  • Published:
Geotectonics Aims and scope

Abstract

The Kola region in the northeastern Baltic Shield is characterized by diverse Paleoproterozoic collision processes. The Keivy Terrane is one of the major tectonic units in the northeastern foreland of the Paleoproterozoic Lapland-Kola Collisional Orogen, which markedly differs in a number of parameters from other tectonic units of the Kola region. The study of the Keivy Terrane allowed us to unravel one more basic difference: the large Paleoproterozoic sheath synform of the Serpovidny (Crescentic) Range localized in this terrane. Its core is occupied by volcanic and sedimentary rocks, which correlate with the fill of the Imandra-Varzuga Rift; the limbs are composed of metamorphosed mature sedimentary rocks known as Keivy paraschists of Neoarchean or Paleoproterozoic age. The lower limb of the Serpovidny Synform is strongly squeezed, whereas the upper limb consists of almost undeformed rocks. The deformed rocks underwent ductile flow under conditions of simple or general shear. In the degree of its asymmetry and main parameters, the Serpovidny Synform is similar to the plunging and recumbent anticlines in the Helvetic nappes of the Alps. It is concluded that the Paleoproterozoic core of the Serpovidny Sheath Synform, or plunging anticline, is a fragment of the almost completely eroded deep Serpovidny Nappe of the Helvetic type. During the collision related to the Lapland-Kola Orogeny (1.9–2.0 Ga), this nappe was pushed out northward from the Paleoproterozoic Imandra-Varzuga Rift, which is situated 50 km south of the Serpovidny structure, and thrust over the Keivy paraschists. The latter, together with underlying the Lebyazhka Gneiss, were folded in the process of thrusting and were involved in the structure of the Serpovidny Synform. The Keivy paraschists make up a para-autochthon or a separate nappe of the Pennine type. The Archean Lebyazhka metafelsic volcanics underlie the Keivy paraschists and overlie granitoids of the Archean basement that remained undeformed during thrusting. Most likely, they also belong to the para-autochthon; however, it cannot be ruled out that, like the Keivy paraschists, they occur as a Pennine-type nappe. The large sheath folds known in the Paleoproterozoic and Phanerozoic orogens are genetically related to deep-seated nappes or channel-flow tectonics. Paleoproterozoic and Phanerozoic orogens are similar in this respect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Alekseev, “Validity of the Dale-Pampelli principle in the light of findings of tongue-shaped folds,” Dokl. Akad. Nauk SSSR 305(6), 1430–1432 (1989) [in Russian].

    Google Scholar 

  2. V. V. Balagansky, M. V. Mints, and J. S. Daly, “The Paleoproterozoic Lapland-Kola Orogen orogen,” in Structure and Dynamics of the Lithosphere of Eastern Europe: Results of Studies under the Europrobe Programme (GEOKART-GEOS, Moscow, 2006), pp. 142–155 [in Russian].

    Google Scholar 

  3. V. V. Balagansky, A. B. Raevsky, and S. V. Mudruk, “Lower Precambrian of the Keivy Terrane, Northeastern Baltic Shield: a stratigraphic succession or a collage of tectonic sheets?,” Geotectonics 45(2), 127–141 (2011).

    Article  Google Scholar 

  4. Batieva, I.D., Petrology of Alkaline Granitoids of the Kola Peninsula (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  5. T. B. Bayanova, Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  6. A. P. Belolipetsky, V. G. Gaskelberg, L. A. Gaskelberg, et al., Geology and Geochemistry of the Early Precambrian Metamorphic Complexes of the Kola Peninsula (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  7. I. I. Belostotsky, “Nappes,” in Essays of Structural Geology of Complexly Deformed Terrains (Nedra, Moscow, 1977), pp. 120–158 [in Russian].

    Google Scholar 

  8. I. V. Bel’kov, Kyanite Schists of the Keivy Formation (AN SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  9. E. V. Bibikova, A. I. Slabunov, S. V. Bogdanova, and T. Skiold, “Early Precambrian tectono-thermal evolution of the Earth crust in the Karelian and Belomorian provinces of the Baltic Shield: U-Pb isotopic evidence from sphene and rutile,” Geochem. Int. 37(8), 750–764 (1999).

    Google Scholar 

  10. S. A. Bushmin, V. A. Glebovitsky, E. M. Prasolov, et al., “New data on the age (SHRIMP II) of protolith and Paleoproterozoic transformations of the Archean Keivy Terrane (Kola Peninsula),” Dokl. Earth Sci. 438(1), pp. 661–665 (2011).

    Article  Google Scholar 

  11. V. R. Vetrin, E. N. Lepekhina, A. N. Larionov, et al., “Initial subalkaline magmatism of the Neoarchean alkaline province of the Kola Peninsula,” Dokl. Earth Sci. 415(5), 663–666 (2007).

    Google Scholar 

  12. V. V. Balagansky, A. A. Basalaev, O.A. Belyaev, et al., Geological Map of the Kola Region (Northeastern Baltic Shield) on a Scale of 1: 500000, Ed. by F. P. Mitrofanov (Geol. Inst. Kola Sci. Center, RAS, Apatity, 1996) [in Russian and English].

  13. V. A. Glebovitsky, Yu. V. Miller, G. M. Drugova, et al., “The Structure and metamorphism of the Belomoride-Lapland Collision Zone,” Geotectonics 30(1), 53–63 (1996).

    Google Scholar 

  14. L. F. Dobrzhinetskaya, Deformation of Igneous Rocks under Conditions of Deep Tectogenesis (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  15. V. G. Zagorodny and A. T. Radchenko, Tectonics of the Karelides in the Northeastern Baltic Shield (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  16. B. C. Zaika-Novatsky and A. N. Kazakov, Structural Analysis and Principles of Structural Geology (Vyshcha shkola, Kiev, 1989) [in Russian].

    Google Scholar 

  17. A. B. Kirmasov, A. V. Solov’ev, and D. K. Hourigan, “Collision and postcollision structural evolution of the Andrianovka Suture, Sredinny Range, Kamchatka,” Geotectonics 38(4), 294–316 (2004).

    Google Scholar 

  18. S. Yu. Kolodyazhny, Structural-Kinematic Evolution of the Southeastern Baltic Shield in the Paleoproterozoic (GEOS, Moscow, 2006), [in Russian].

    Google Scholar 

  19. S. Yu. Kolodyazhny, “Structural-kinematic evolution of the central Belomorian-Lapland Belt in the Paleoproterozoic,” Geotectonics 41(3), 210–230 (2007).

    Article  Google Scholar 

  20. Yu. V. Miller, “Unique Folds in the fold-and-thrust framework of the Belomorian Mobile Belt,” Geotectonics 31(4), 329–337 (1997).

    Google Scholar 

  21. Yu. V. Miller and R. I. Mil’kevich, “Fold-nappe structure of the Belomorian Zone and its relationship with the Karelian granite-greenstone domain,” Geotectonics 29(6), 80–93 (1995).

    Google Scholar 

  22. M. V. Mints, V. N. Glaznev, A. K. Konilov, et al., The Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Crustal Structure, and Evolution (Nauchnyi mir, Moscow, 1996) [in Russian].

    Google Scholar 

  23. M. V. Mints, R. G. Berzin, A. K. Suleimanov, et al., “The deep structure of Early Precambrian crust of the Karelian Craton, southeastern Fennoscandian Shield: results of investigation along CMP profile 4B,” Geotectonics 38(2), 87–102 (2004).

    Google Scholar 

  24. F. P. Mitrofanov, T. B. Bayanova, N. L. Balabonin, et al., “The Early Precambrian Kola Collisionum: new data on geology, geochronology, geodynamics, and metallogeny,” Vestnik SpbGU, Ser. 7, No. 3, 5–18 (1997) [in Russian].

    Google Scholar 

  25. F. P. Mitrofanov, D. R. Zozulya, T. B. Bayanova, and N. V. Levkovich, “The world’s oldest anorogenic alkali granitic magmatism in the Keivy structure on the Baltic Shield,” Dokl. Earth Sci. 374(7), 1145–1148 (2000).

    Google Scholar 

  26. V. Z. Negrutsa and T. F. Negrutsa, Lithogenetic Principles of Paleodynamic Reconstructions of the Lower Precambrian of the Eastern Baltic Shield (Kola Sci. Center RAS, Apatity, 2007) [in Russian].

    Google Scholar 

  27. V. P. Petrov, O. A. Belyaev, Z. M. Voloshina, et al., Endogenic Regimes of Early Precambrian Metamorphism in the Northeastern Baltic Shield (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  28. A. A. Polkanov, “Pre-Quaternary geology of the Kola Peninsula and Karelia or the easternmost Fennoscandian Crystalline Shield,” in Proceedings of the 17th Session of IGC (GONTI, Moscow, 1939), Vol. 2, pp. 27–58 [in Russian].

    Google Scholar 

  29. A. A. Predovsky, Reconstruction of Sedimentation and Volcanic Activity Conditions in the Early Precambrian (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  30. A. T. Radchenko, V. V. Balagansky, A. N. Vinogradov, et al., Precambrian Tectonics of the Northeastern Baltic Shield. Explanatory Notes to the Tectonic Map on a Scale of 1: 500000 (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  31. A. B. Raevsky, “An iterative algorithm for magnetic induction modulus inversion,” Izv. Physics Solid Earth 44(7), 548–554 (2008).

    Article  Google Scholar 

  32. A. V. Sidorenko, V. A. Tenyakov, O. M. Rosen, et al., Precambrian Para- and Orthoamphibiolites: the State of the Art and Experience in Analysis of Amphibolites in Kola Peninsula (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  33. B. A. Yudin, Gabbroanorthosites in Kola Peninsula and their metallogeny (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  34. G. I. Alsop and R. E. Holdsworth, “The geometry and topology of natural sheath folds: a new tool for structural analysis,” J. Struct. Geol. 26(9), 1561–1589 (2004).

    Article  Google Scholar 

  35. G. I. Alsop and R. E. Holdsworth, “Shear folds as discriminators of bulk strain type,” J. Struct. Geol. 28(9), 1588–1606 (2006).

    Article  Google Scholar 

  36. G. I. Alsop and R. E. Holdsworth, “The three dimensional shape and localisation of deformation within multilayer sheath folds,” J. Struct. Geol. 44, 110–128 (2012).

    Article  Google Scholar 

  37. G. I. Alsop, R. E. Holdsworth, and K. J. W. McCaffrey, “Scale invariant sheath folds in salt, sediments and shear zones,” J. Struct. Geol. 29(10), 1585–1604 (2007).

    Article  Google Scholar 

  38. V. V. Balagansky, S. V. Mudruk, L. A. Gorbunov, and A. B. Raevsky, “Tectonics of detached middle crust in the northeastern foreland of the Palaeoproterozoic Lapland-Kola Collisional Orogen, north-eastern Baltic Shield,” Proceedings of the Murmansk State Technical Univ. 15(2), 300–310 (2012).

    Google Scholar 

  39. C. Beaumont, M. H. Nguyen, R. A. Jamieson, and S. Ellis, “Crustal flow modes in large hot orogens,” in Channel Flow, Ductile Extrusion, and Exhumation in Continental Collision Zones, Ed. by R. D. Law, M. P. Seale, and L. Godin (Geol. Soc. London Spec. Publ., 2006), vol. 268, pp. 91–145.

    Google Scholar 

  40. J. W. Berlenbach and C. Roering, “Sheath-fold-like structures in pseudotachylytes,” J. Struct. Geol. 14(7), 847–856 (1992).

    Article  Google Scholar 

  41. A. Berthelsen and M. Marker, “Tectonics of the Kola Collision Suture and adjacent Archaean and Early Proterozoic terrains in the northeastern region of the Baltic Shield,” Tectonophysics 126, 31–55 (1986).

    Article  Google Scholar 

  42. C. E. Bonamici, B. Tikoff, and L. B. Goodwin, “Anatomy of a 10 km-scale sheath fold, Mount Hay Ridge, Arunta Region, Central Australia: the structural record of deep crustal flow,” Tectonics 30, TC615 (2011). doi: 10.1029/2011TC002873

    Article  Google Scholar 

  43. D. Bridgwater, M. Marker, and F. Mengel, “The eastern extension of the Early Proterozoic Torngat Orogenic Zone across the Atlantic,” in Lithoprobe Report (St. John’s, 1992), No. 27, pp. 76–91.

    Google Scholar 

  44. S. Bushmin, N. Alexejev, D. Dolivo-Dobrovolsky, and T. Shcheglova, “Metasomatic processes, P-T retrograde evolution and tectonic dynamics in thrust structures, Lapland Kola Mobile Belt, eastern Baltic Shield,” in Eurobridge Workshop Abstracts (GSL, Vilnius, 1997), pp. 15–17.

    Google Scholar 

  45. P. R. Cobbold and H. Quinquis, “Development of sheath folds in shear regimes,” J. Struct. Geol. 2(2), 119–126 (1980).

    Article  Google Scholar 

  46. J. S. Daly, V. V. Balagansky, M. J. Timmerman, and M. J. Whitehouse, “The Lapland-Kola Orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere,” in European Lithosphere Dynamics, Ed. by D. G. Gee and R. A. Stephenson (Geol. Soc. London Mem. 2006), Vol. 32, pp. 579–598.

    Google Scholar 

  47. D. Dietrich and M. Casey, “A new tectonic model for the Helvetic nappes,” in Alpine Tectonics, Ed. by M. P. Cornard, D. Dietrich, and R. G. Park (Geol. Soc. London Spec. Publ., 1989), Vol. 45, pp. 47–63.

    Google Scholar 

  48. S. M. Fedo, H. W. Nesbitt and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance,” Geology 23(10), 921–924 (1995).

    Article  Google Scholar 

  49. Finnish Reflection Experiment FIRE 2001–2005 (Geologian tutkimuskeskus. Espoo, 2006).

  50. D. I. Grujic, “Channel flow and continental collision tectonics: an overview,” in Channel Flow, Ductile Extrusiton and Exhumation in Continental Collision Zones, Ed. by R. D. Law, M. P. Searle, and L. Godin (Geol. Soc. London Spec. Publ., 2006), Vol. 268, pp. 25–37.

    Google Scholar 

  51. S. Hanmer and C. Passchier, Shear-Sense Indicators: a Review, Geol. Survey Canada Paper, No. 90-17, 1–72 (1991).

    Book  Google Scholar 

  52. L. Harnois, “The CIW index: a new chemical index of weathering,” Sedim. Geol. 55(3/4), 319–322 (1988).

    Article  Google Scholar 

  53. M. Herwegh and O. A. Pfiffner, “A tectono-metamorphic evolution of a nappe stack: a case study of the Swiss Alps,” Tectonophysics 404, 55–76 (2005).

    Article  Google Scholar 

  54. K. Korsman, T. Korja, M. Pajunen, et al., “The GGT/SVEKA transect: structure and evolution of the continental crust in the Paleoproterozoic Svecofennian Orogen in Finland,” Intern. Geol. Rev. 41, 287–333 (1999).

    Article  Google Scholar 

  55. R. Lacassin and M. Mattauer, “Kilometre-scale sheath fold at Mattmark and implications for transport direction in the Alps,” Nature 315, 739–742 (1985).

    Article  Google Scholar 

  56. A. P. Martin, D. J. Condon, A. R. Prave, et al., “Dating the termination of the Palaeoproterozoic Lomagundi-Jatuli carbon isotopic event in the North Transfennoscandian Greenstone Belt,” Precambr. Res. 224, 160–168 (2013).

    Article  Google Scholar 

  57. V. A. Melezhik and B. A. Sturt, “General geology and evolutionary history of the Early Proterozoic Polmak-Pasvik-Pechenga-Imandra/Varzuga-Ust’Ponoy Greenstone Belt in the northeastern Baltic Shield,” Earth-Sci. Rev. 36, 205–241 (1994).

    Article  Google Scholar 

  58. V. A. Melezhik and E. J. Hanski, “The Early Palaeoproterozoic of Fennoscandia: geological and tectonic settings,” in Reading the Archive of Earth’s Oxygenation, Vol. 1: the Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia—Drilling Early Earth Project (Springer, Berlin, 2013), pp. 33–38.

    Chapter  Google Scholar 

  59. V. A. Melezhik, H. Huhma, D. J. Condon, et al., “Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event,” Geology 32, 655–658 (2007).

    Article  Google Scholar 

  60. L. D. Minnigh, “Structural analysis of sheath folds in a metar-chert from the western Italian Alps,” J. Struct. Geol. 1, 275–282 (1979).

    Article  Google Scholar 

  61. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  62. C. Passchier, J. Myers, and A. Kröner, Field Geology of High-Grade Gneiss Terrains (Springer, Berlin, 1990).

    Book  Google Scholar 

  63. O. A. Pfiffner, “The Alps,” in Encyclopedia of Geology (Elsevier, Amsterdam, 2005), Vol. 2, pp. 125–135.

    Chapter  Google Scholar 

  64. H. Quinquis, C. Audren, J. P. Brun, and P. Cobbold, “Intensive progressive shear in Ile de Groix blueschists and compatibility with subduction or obduction,” Nature 274, 43–45 (1978).

    Article  Google Scholar 

  65. J. G. Ramsay, “Tectonics of the Helvetic nappes,” in Thrust and Nappe Tectonics, Ed. by N. J. Price and K. McClay (Geol. Soc. London Spec. Publ., 1981), Vol. 9, pp. 293–309.

    Google Scholar 

  66. J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic Press, London, 1983).

    Google Scholar 

  67. J. G. Ramsay and M. I. Huber, The techniques of Modern Structural Geology, Vol. 2: Folds and fractures (Academic Press, London, 1987).

    Google Scholar 

  68. M. P. Searle and G. I. Alsop, “Eye-to-eye with a megasheath fold: a case study from Wadi Mayh, Northern Oman Mountains,” Geology 35(11), 1043–1046 (2007).

    Article  Google Scholar 

  69. F. J. Turner and L. E. Weiss, Structural Analysis of Metamorphic Tectonites (McGraw Hill, New York, 1963).

    Google Scholar 

  70. F. W. Vollmer, “A computer model of sheath-nappes formed during crustal shear in the western gneiss region, central Norwegian Caledonides,” J. Struct. Geol. 10(7), 735–743 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mudruk.

Additional information

Original Russian Text © S.V. Mudruk, V.V. Balagansky, I.A. Gorbunov, A.B. Raevsky, 2013, published in Geotektonika, 2013, No. 4, pp. 13–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudruk, S.V., Balagansky, V.V., Gorbunov, I.A. et al. Alpine-type tectonics in the Paleoproterozoic Lapland-Kola Orogen. Geotecton. 47, 251–265 (2013). https://doi.org/10.1134/S0016852113040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852113040055

Keywords

Navigation