Skip to main content
Log in

Spectral composition of the cyclic aperiodic (quasibiennial) variations in solar activity and the Earth’s atmosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on the published analysis of the average monthly variations in solar activity and temperature of the upper atmosphere in the region of the mesopause and lower thermosphere (after elimination of the average long-term variations during different 11-year cycles), it was indicated that the periods and amplitudes of the observed quasibiennial variations monotonically decrease in the course of time. The regularity of these variations is described by the Airy function, which represents a wave train with decreasing amplitude and period and reflects cyclic hydrodynamic processes in the Sun’s interior. A spectral analysis of the quasibiennial variations modelly described by the Airy function has been performed. It has been revealed that the period amplitudes near the average value for 2.25 years (27 months) are distributed normally with a dispersion of ∼0.5 years. According to several publications, similar periods are obtained by analyzing measurements of long-term variations in solar activity and parameters of the lower and middle atmosphere. This indicates that the values of the periods are obtained randomly. Therefore, a standard Fourier analysis does not make it possible to determine a real character of the quasibiennial variations since a real physical process is not revealed in the course of this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Apostolov, “Quasi-Biennial Oscillation in Sunspot Activity,” Bull. Astron. Inst. Czech. 36(2), 97–102 (1985).

    Google Scholar 

  2. E. M. Apostolov and V. Letfus, “Quasi-Biennial Oscillation of the Green Corona Intensity,” Bull. Astron. Inst. Czech. 36(4), 199–205 (1985).

    Google Scholar 

  3. N. M. Astaf’eva, “Wavelet Analysis: Theoretical Backgrounds and Application Examples,” Usp. Fiz. Nauk 166(11), 1145–1170 (1996).

    Article  Google Scholar 

  4. D. G. Baranov, E. S. Vernova, M. I. Tyasto, and M. V. Alaniya, “Features of the Time Behavior of the Amplitude of 27-Day Variations in Galactic Cosmic Rays,” Geomagn. Aeron. 41(2), 169–174 (2001) [Geomagn. Aeron. 41, 162–168 (2001)].

    Google Scholar 

  5. F. Bothmer, I. S. Veselovsky, A. V. Dmitriev, et al., “Solar and Heliospheric Causes of Geomagnetic Disturbances at the Growth Phase of Solar Cycle 23,” Astron. Vestn. 36(6), 539–547 (2002).

    Google Scholar 

  6. H. H. Clayton, “A Lately Discovered Meteorological Cycle. I,” Am. Meteorol. J. 1(4), 130–143 (1884a).

    Google Scholar 

  7. H. H. Clayton, “A Lately Discovered Meteorological Cycle. II,” Am. Meteorol. J. 1(6), 528–534 (1884b).

    Google Scholar 

  8. H. W. Clough, “The 28-Month Period in Solar Activity and Corresponding Periods in Magnetic and Meteorological Data,” Mon. Weather Rev. 56(7), 251–264 (1928).

    Article  Google Scholar 

  9. H. W. Clough, “A Systematically Varying Period with an Average Length of 28 Months in Weather and Solar Phenomena,” Mon. Weather Rev. 52(9), 421–439 (1924).

    Article  Google Scholar 

  10. D. L. Danilov and A. A. Zhiglyavskii, Main Components of the Time Series: A “Caterpillar” Method (St. Peterb. Gos. Univ., St. Petersburg, 1997) [in Russian].

    Google Scholar 

  11. Y. J. F. Desaubies, “Internal Waves near the Turning Point,” Geophys. Fluid. Dyn. 5(2), 143–154 (1973).

    Google Scholar 

  12. L. S. Yevlashin, “Aperiodic Variations in the Occurrence Frequency of Red Type-A Auroras during the 11-Year Cycle of Solar Activity,” Geomagn. Aeron. 45(3), 411–415 (2005) [Geomagn. Aeron. 45, 388–391 (2005)].

    Google Scholar 

  13. Kh. M. Fadel, A. I. Semenov, N. N. Shefov, et al., “Quasibiennial Variations in the Temperatures of the Mesopause and Lower Thermosphere and Solar Activity,” Geomagn. Aeron. 42(2), 203–207 (2002) [Geomagn. Aeron. 42, 191–195 (2002)].

    Google Scholar 

  14. V. V. Fedorov, V. N. Glazkov, I. V. Bugaeva, and D. A. Tarasenko, “On the Relation between the Quasibiennial Variations in the Equatorial Circulation and Variations in the Atmospheric Parameters,” Meteorol. Gidrol., No. 10, 24–30 (1994).

  15. A. Gill, Atmosphere-Ocean Dynamics (Academic, New York, 1982; Mir, Moscow, 1986), Vol. 1.

    Google Scholar 

  16. A. N. Gruzdev and V. A. Bezverkhnii, “Quasibiennial Cyclicity in the Atmosphere over North America according to Data of Ozone Probes,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41(1), 36–50 (2005).

    Google Scholar 

  17. A. N. Gruzdev and V. A. Bezverkhnii, “Long-Term Variations in the Quasibiennial Cyclicity of the Equatorward Stratospheric Wind,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 35(6), 773–785 (1999).

    Google Scholar 

  18. A. N. Gruzdev and V. A. Bezverkhnii, “On the Sources of the Quasibiennial Cyclicity in the Atmosphere of the Northern Hemisphere,” Dokl. Akad. Nauk 389(4), 528–531 (2003).

    Google Scholar 

  19. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1965; Nauka, Moscow, 1979).

    Google Scholar 

  20. G. S. Ivanov-Kholodny, E. I. Mogilevsky, and V.Ye. Chertoprud, “Quasibiennial Oscillations of the Solar Magnetic Field and Heliomagnetic Activity,” Geomagn. Aeron. 44(3), 291–295 (2004) [Geomagn. Aeron. 44, 265–269 (2004)].

    Google Scholar 

  21. G. S. Ivanov-Kholodny, E. I. Mogilevsky, and V.Ye. Chertoprud, “Quasibiennial Oscillations in Total Solar Irradiance and in the Earth’s Ionospheric Parameters,” Geomagn. Aeron. 40(5), 25–29 (2000b) [Geomagn. Aeron. 40, 565–569 (2000b)].

    Google Scholar 

  22. G. S. Ivanov-Kholodny, E. V. Nepomnyashchaya, and V.Ye. Chertoprud, “Variability of the Parameters of Quasibiennial Variations in the Earth’s Ionosphere in the 11-year Cycle,” Geomagn. Aeron. 40(4), 126–128 (2000) [Geomagn. Aeron. 40, 526–528 (2000a)].

    Google Scholar 

  23. Yu. D. Kalinin, “On Certain Problems of Studying Secular Variations in the Terrestrial Magnetism,” Tr. IZMIRAN, No. 8(18), 5–11 (1952).

  24. K. A. Kandaurova, “Statistical Analysis and Prediction of the Zurich Series of Wolf Numbers with the Eliminated Regular Part,” Soln. Dannye, No. 11, 80–89 (1971).

  25. E. V. Kononovich and N. N. Shefov, “Fine Structure of the 11-Year Cycles of Solar Activity,” Geomagn. Aeron. 43(2), 166–173 (2003) [Geomagn. Aeron. 43, 156–163 (2003)].

    Google Scholar 

  26. E. V. Kononovich, “Analytical Representations of Mean Solar Activity Variations during a Cycle,” Geomagn. Aeron. 45(3), 316–323 (2005) [Geomagn. Aeron. 45, 295–302 (2005)].

    Google Scholar 

  27. E. V. Kononovich, “Mean Variations of the Solar Activity Cycles: Analytical Representations,” in Proceedings of the 27th Annual Seminar “Physics of Auroral Phenomena”, Apatity, 2004, pp. 83–86.

  28. K. Labitzke and H. van Loon, “Associations between the 11-Year Solar Cycle, the QBO and the Atmosphere. Part I. The Troposphere and Stratosphere in the Northern Hemisphere in Winter,” J. Atmos. Terr. Phys. 50(3), 197–206 (1988).

    Article  Google Scholar 

  29. V. P. Mikhailutsa and M. N. Gnevyshev, “Solar Magnetic Field Energy, Green Corona Luminosity, and Solar Cycle Properties,” Soln. Dannye, No. 4, 88–95 (1988).

  30. A. V. Mikhalev, A. B. Beletskii, N. V. Kostyleva, and M. A. Chernigovskaya, “Characteristics of Midlatitude Airglows during Large Geomagnetic Storms in the Current Solar Cycle,” Opt. Atmos. Okeana 18(1–2), 155–159 (2005).

    Google Scholar 

  31. A. S. Monin, Theoretical Backgrounds of the Geophysical Hydrodynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  32. W. H. Munk, “Internal Wave Spectra at the Buoyant and Inertial Frequencies,” J. Phys. Oceanogr. 10(11), 1718–1728 (1980).

    Article  Google Scholar 

  33. V. N. Obridko and B. D. Shelting, “Global Magnetology of the Sun and Reference Points of the Solar Cycle,” Astron. Zh. 80(11), 1034–1045 (2003) [Astron. Rep. 47 (11), 953–962 (2003)].

    Google Scholar 

  34. V. N. Obridko and B. D. Shelting, “Quasibiennial Oscillations in the Global Solar Magnetic Field,” Astron. Zh. 78(12), 1146–1152 (2001).

    Google Scholar 

  35. Yu. R. Rivin and T. I. Zvereva, “Frequency Composition of Quasibiennial Variations in the Geomagnetic Field,” in The Solar Wind, Magnetosphere, and Geomagnetic Field, Ed. by A. E. Levitin (Nauka, Moscow, 1983), pp. 72–90 [in Russian].

    Google Scholar 

  36. A. Schuster, “On Sunspot Periodicities. Preliminary Notice,” Proc. R. Soc. London 77(A515), 141–145 (1906).

    Google Scholar 

  37. A. I. Semenov and N. N. Shefov, “New Knowledge of Variations in the Hydroxyl, Sodium, and Atomic Oxygen Emissions,” Geomagn. Aeron. 43(6), 840–845 (2003) [Geomagn. Aeron. 43, 786–791 (2003)].

    Google Scholar 

  38. A. A. Solov’ev and E. A. Kirichek, Diffuse Theory of the Solar Magnetic Cycle (Kalmyk. State Univ., Elista-St. Petersburg, 2004) [in Russian].

    Google Scholar 

  39. E. S. Vernova, M. I. Tyasto, D. G. Baranov, and M. S. Grigoryan, “Amplitude Pattern of the 27-Day Cosmic-Ray Variation in the Course of the Solar Cycle,” Geomagn. Aeron. 37(2), 105–109 (1997) [Geomagn. Aeron. 37, 234–236 (1997)].

    Google Scholar 

  40. A. Woeikof, “Alternation of Cold and Warm Winters,” Meteorol. Vestn., No. 9, 409–422 (1891).

  41. A. Woeikof, “Die Schneedecke in ‘Paaren’ und ‘Unpaaren’ Wintern,” Meteorol. Z. 12(2), 77–78 (1895).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.N. Shefov, A.I. Semenov, 2006, published in Geomagnetizm i Aeronomiya, 2006, Vol. 46, No. 4, pp. 435–441.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shefov, N.N., Semenov, A.I. Spectral composition of the cyclic aperiodic (quasibiennial) variations in solar activity and the Earth’s atmosphere. Geomagn. Aeron. 46, 411–416 (2006). https://doi.org/10.1134/S0016793206040013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793206040013

PACS numbers

Navigation