Skip to main content
Log in

Interaction of Titanium Minerals and Their Melts with Diamond-Forming Media (Experiments at 7–8 GPa)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Melting relations in the multicomponent diamond-forming systems of the upper mantle with a boundary of K–Na–Mg–Fe–Ca carbonate, phases of the model peridotite and eclogite, carbon, and titanium minerals from kimberlite (ilmenite FeTiO3, perovskite CaTiO3, and rutile TiO2) were studied experimentally at 7–8 GPa and 1600–1650°C. Perovskite reacts with the formation of rutile in the diamond-forming silicate–carbonate melts. We discovered liquid immiscibility between melts of titanium minerals, on the one hand, and carbonate–carbon, peridotite–carbonate–carbon, and eclogite–carbonate–carbon diamond-forming melts, on the other. The solubility of titanium mineral in diamond-forming melts is negligible independent of their concentration in the experimental systems. Growth melts retain high diamond-forming efficiency. In general, the experimental results are evident for the xenogenic nature of titanium minerals in inclusions in diamond and, therefore, in diamond-forming melts. It is shown that the physicochemical factors that may correlate the diamond content with the concentration of Ti in kimberlite do not occur during the diamond genesis in silicate–carbonate–carbon parental melts containing titanium minerals and their melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Anashkin, A. Bovkun, L. Bindi, V. Garanin, and Yu. Litvin, “Kudryavtsevaite, Na3MgFe3+Ti4O12, a new kimberlitic mineral,” Mineral. Mag. 77 (3), 327–334 (2013).

    Article  Google Scholar 

  • A. V. Bobrov, and Yu. A. Litvin, “Peridotite–eclogite–carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions,” Russ. Geol. Geophys. 50 (12), 1221–1233 (2009).

    Article  Google Scholar 

  • O. A. Bogatikov, V. A. Kononova, A. A. Nosova, and A. V. Kargin, “Polygenetic sources of kimberlites, magma composition, and diamond potential exemplified by the East European and Siberian cratons,” Petrology 17 (6), 606–627 (2009).

    Article  Google Scholar 

  • G. P. Bulanova, E. Muchemwa, D. G. Pearson, B. Griffin, S. P. Kelley, S. Klemme, and C. B. Smith, “Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe)—evidence for metasomatic conditions of growth,” Lithos 77, 181–192 (2004).

    Article  Google Scholar 

  • A. R. Chakhmouradian, and R. H. Mitchel, “Occurrence, alteration patterns and compositional variation of perovskite in kimberlites,” Can. Mineral. 38, 975–994 (2000).

    Article  Google Scholar 

  • R. M. Davies, W. L. Griffin, S. Y. O’Reilly, and T. E. McCandless, “Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume,” Lithos 77, 99–111 (2004b).

    Article  Google Scholar 

  • R. M. Davies, W. L. Griffin, S. Y. O’Reilly, and B. J. Doyle, “Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada,” Lithos 77, 39–55 (2004a).

    Article  Google Scholar 

  • J. B. Dawson, Kimberlites and their Xenoliths (Springer-Verlag, Berlin, 1980).

    Book  Google Scholar 

  • V. K. Garanin, A. V. Bovkun, V. K. Garanin, A. Ya. Rotman, and I. V. Serov, Microcrystalline Oxides from Kimberlites of Russia (GEOS, Moscow, 2009) [in Russian].

    Google Scholar 

  • V. K. Garanin, and M. V. Rogozhkina, “Accessory and rare-metals of diamondiferous eclogites from the Udachnaya kimberlite pipe,” Izv. Vyssh. Uchebn. Zaved. Geol. Razvedka, No. 2, 40–49 (2003).

    Google Scholar 

  • S. E. Haggerty, “Metasomatic mineral titanates in upper mantle xenoliths,” Mantle Xenoliths, Ed. by P. H. Nixon (John Wiley & Sons, New York, 1987), pp. 671–690.

    Google Scholar 

  • S. E. Haggerty, “The chemistry and genesis of opaque minerals in kimberlites,” Phys. Chem. Earth 9, 295–307 (1975).

    Article  Google Scholar 

  • S. E. Haggerty, J. R. Smyth, A. J. Ertank, et al., “Lindsleyite (Ba) and mathiasite (K): two new chromium titanites in the crichtonite series from the upper mantle,” Am. Mineral. 69, 494–505 (1983).

    Google Scholar 

  • Handbook of Chemistry and Physics (CRC Press, 2010)

  • F. V. Kaminsky, O. D. Zakharchenko, R. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina area, Mato-Grosso State, Brazil,” Contrib. Mineral. Petrol. 140 (6), 734–753 (2001).

    Article  Google Scholar 

  • F. V. Kaminsky, O. D. Zakharchenko, W. L. Griffin, D. M. Channer, and G. K. Khachatryan-Blinova, “Diamond from the Guaniamo area, Venezuela,” Can. Mineral. 38 (6), 1347–1370 (2000).

    Article  Google Scholar 

  • A. D. Kharkiv, N. N. Zinchuk, and A. I. Kryuchkov, Primary Diamond Deposits in the World (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  • M. G. Kopylova, J. J. Gurney, and L. R. M. Daniels, “Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe,” Contrib. Mineral. Petrol. 129, 366–384 (1997).

    Article  Google Scholar 

  • M. G. Kopylova, R. S. Rickard, A. Kleyenstueber, V. R. Taylor, J. J. Gurney, and L. R. M. Daniels, “First occurrence of strontian K–Cr-loparite and Cr-chevkinite in diamonds,” Geol. Geofiz. 38 (2), 382–397 (1997).

    Google Scholar 

  • Yu. A. Litvin, “High-pressure mineralogy of diamond genesis,” Advances in High-Pressure Mineralogy, Ed. by Eiji Ohtani, Geol. Soc. Am. Sp. Pap. 421, 83–103 (2007).

    Google Scholar 

  • Yu. A. Litvin, “The physicochemical conditions of diamond formation in the mantle matter: experimental studies,” Russ. Geol. Geophys. 50 (12), 1188–1200 (2009).

    Article  Google Scholar 

  • Yu. A. Litvin, “Physicochemical formation conditions of natural diamond deduced from experimental study of the eclogite–carbonatite–sulfide–diamond system,” Geol. Ore Deposits 54 (6), 443–457 (2012).

    Article  Google Scholar 

  • Yu. A. Litvin, “Physicochemical conditions of syngenesis of diamond and heterogenous inclusions in carbonate–silicate paremtal melts (experimental study),” Mineral. Zh. 35 (2), 5–24 (2013).

    Google Scholar 

  • Yu. A. Litvin and A. V. Spivak, “Growth of diamond crystals at 5.5–8.5 GPa in the carbonate–carbon melts–solutions, chemical analogues of natural diamondforming media,” Materialovedenie 84 (3), 27–34 (2004).

    Google Scholar 

  • Yu. A. Litvin and V. A. Zharikov, “Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570°C,” Dokl. Earth Sci. 372 (6), 867–870 (2000).

    Google Scholar 

  • Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, “Experimental characterization of diamond crystallization in melts of mantle silicate–carbonate–carbon systems at 7.0–8.5 GPa,” Geochem. Int. 46 (6), 531–553 (2008).

    Article  Google Scholar 

  • Yu. A. Litvin, P. G. Vasil’ev, A. V. Bobrov, V. Yu. Okoemova, and A. V. Kuzyura, “Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment,” Geochem. Int. 50 (9), 726–770 (2012).

    Article  Google Scholar 

  • Yu. A. Litvin, A. V. Spivak and A. V. Kuzyura, “Fundamentals of the mantle carbonatite concept of diamond genesis,” Geochem. Int. 54 (10), 839–857 (2016).

    Article  Google Scholar 

  • H. O. A. Meyer and M. E. McCallum, “Mineral inclusions in diamonds from the Sloan kimberlites, Colorado,” J. Geology 94 (4), 600–612 (1986).

    Article  Google Scholar 

  • H. O. A. Meyer and D. P. Svisero, “Mineral inclusions in Brazilian diamonds,” Phys. Chem. Earth 9, 785–795 (1975).

    Article  Google Scholar 

  • H. O. A. Meyer and H. M. Tsai, “The nature and significance of mineral inclusions in natural diamond: a review,” Mineral. Sci. Eng. 8, 242–261 (1976).

    Google Scholar 

  • R. H. Mitchell, Kimberlites: their Mineralogy, Geochemistry and Petrology, (New York, 1986).

    Book  Google Scholar 

  • S. I. Mityukhin and Z. V. Spetsius, “Paragenesis of inclusions in diamonds from the Botuobinskaya pipe (Nakyn field, Yakutia),” Russ. Geol. Geophys. 46 (12), 1225–1236 (2005).

    Google Scholar 

  • R. O. Moore and J. J. Gurney, “Mineral inclusions in diamond from the Monastery kimberlite, South Africa,” in Diamonds, Kimberlites and Related Rocks, Ed. by J. Ross, et al., Geol. Soc. Austral., (Blackwell Scient. Publ., Melbourne, 1989), Vol. 2, pp. 1029–1041.

    Google Scholar 

  • P. H. Nixon and E. Condliffe, “Yimengite of K–Ti metasomatic origin in kimberlitic rocks from Venezuela,” Mineral. Mag. 53, 305–309(1989).

    Article  Google Scholar 

  • M. L. Otter and J. J. Gurney, Mineral inclusions in diamonds from the Sloan diatremes, Colorado–Wyoming State Line kimberlite district, North America,” in Kimberlites and Related Rocks. Their Mantle/Crust Setting, Diamonds and Diamond Exploration, Ed. by J. Ross, Geol. Soc. Australia, (Blackwell Scient. Publ., Melbourne, 1989), Vol. 2, pp. 1042–1053.

    Google Scholar 

  • A. D. Patchen, L. A. Taylor, and N. Pokhilenko, “Ferrous freudenbergite in ilmenite megacrysts: a unique paragenesis from the Dalnaya kimberlite, Yakutia,” Am. Mineral. 82, 991–1000 (1997).

    Article  Google Scholar 

  • M. Prinz, D. V. Manson, P. F. Hlava, and K. Keil, “Inclusions in diamonds: garnet lherzolite and eclogite assemblages,” Phys. Chem. Earth 9, 797–816 (1975).

    Article  Google Scholar 

  • M. Schrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochem. Cosmoch. Acta 58 (2), 761–771 (1994).

    Article  Google Scholar 

  • N. V. Sobolev, Deep-seated Inclusions in Kimberlites and Problem of Upper Mantle Composition (Nauk, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  • N. V. Sobolev and E. S. Yefimova, “Composition and petrogenesis of Ti-oxides associated with diamonds,” Int. Geol. Rev. 42 (8), 758–767 (2000).

    Article  Google Scholar 

  • N. Sobolev, F. Kaminsky, W. Griffin, E. Yefimova, T. Win, C. Ryan, and A. Botkunov, “Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia,” Lithos 39, 135–157 (1997).

    Article  Google Scholar 

  • N. V. Sobolev, E. S. Yefimova, F. V. Kaminsky, Yu. G. Lavrent’ev, and L. V. Usova, “Titanates of complex composition and phologopite in the diamond stabilitgy field,” in Composition and processes of Deep-Seated Zones of Continental Lithosphere (Nauka, Novosibirsk, 1988), pp. 79–81 [in Russian].

    Google Scholar 

  • E. V. Spetsius, and A. F. Safronov, “Some features of rutile composition in eclogite assemblages and in the paragenesis with diamond,” Zap. Vsesoyuz. Mineral. O-va, no. 6, 699–704 (1986).

    Google Scholar 

  • Z. V. Spetsius, and V. I. Koptil, “Associations with diamond in the Sytykan kimberlite pipe,” Izv. Vyssh. Ucheb. Zaved., Geol. Razved., No. 1, 23–28 (2008).

    Google Scholar 

  • A. V. Spivak, N. A. Solopova, L. S. Dubrovinskii, and Yu. A. Litvin, The MgCO3–FeCO3–CaCO3–Na2CO3 system at 12–23 Gpa: phase relations and significance for the genesis of ultradeep diamonds, Dokl. Earth Sci. 464 (2), 946–950 (2015).

    Article  Google Scholar 

  • V. B. Vasilenko, L. G. Kuznetsova, A. V. Tolstov, and V. A. Minin, “Evaluating the diamondiferous potential of unaltered kimberlites by the population models of their composition,” Geochem. Int. 50 (12), 998–1006 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Original Russian Text © Yu.A. Litvin, A.V. Bovkun, V.K. Garanin, 2018, published in Geokhimiya, 2018, No. 2, pp. 160–174.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Bovkun, A.V. & Garanin, V.K. Interaction of Titanium Minerals and Their Melts with Diamond-Forming Media (Experiments at 7–8 GPa). Geochem. Int. 56, 148–161 (2018). https://doi.org/10.1134/S0016702918010032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918010032

Keywords

Navigation