Skip to main content
Log in

Geochemistry of the Eocene limestones of the Jaisalmer basin, Rajasthan, India: Implications on depositional conditions and sources of rare earth elements

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Major, trace and rare earth elements (REE) concentration of the Eocene limestones, Jaisalmer Basin, Rajasthan, India are analysed to reconstruct the depositional conditions and to identify sources of REEs. Among the major oxides, CaO is the dominant oxide followed by SiO2 in the studied limestones. Trace element Ba dominates over the other trace elements and it shows negative correlation with CaO. The Sr, occurring in small concentration, shows positive correlation with CaO. Other trace elements such as V, Zr, Sc, Y, Rb, Ni, Pb Co, Cu, U occur in small concentrations. The studied limestones show a positive correlation of ΣREE with Fe2O3, Ni, Th, Sc, and Y. These limestones possess sea-water like shale-normalized REE + Y pattern with light REE depletion, slight Gd enrichment, slightly positive La anomaly, positive Y anomaly, positive Eu anomaly, negative Ce anomaly and superchondritic Y/Ho ratio from 23.12 to 28.57. The dominance of CaO and low percentage of MgO suggest that mineral phase is calcite and there is absence of dolomitization. The occurrence of SiO2 and Al2O3 in appreciable percentages may be because of the siliciclastic input during the limestone precipiatetion. The low concentration of Uranium (0.4-3.7) and authigenic Uranium (Average Total U-Th/3 value = 0.74) indicate that the studied limestones were precipitated in oxic condition from seawater. The depletion of LREE suggests that the limestones were precipitated from the seawater. The positive correlation of ΣREE with Al2O3 Fe2O3, Ni, Th, Sc, and Y and negative correlation with CaO suggest an input of siliciclastic sediments from the land during limestone precipitation. The negative Ce anomaly, slightly positive La anomaly, slight Gd enrichment, positive Y anomaly, and positive Eu anomaly also suggest that the limestone was precipitated from the seawater with some siliciclastic input from continent. The low values of the Y/Ho ratio (23.12 to 28.57) in the studied limestones suggest some modification of the seawater by the input of freshwater in a coastal environment. The REEs of the studied limestones are correlable with the shallow sea water REEs with exception of a few elements. We envisage a coastal/shallow marine depositional environment where mixing of the continental material in sea water appears feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. W. Alexander, M. Bau, P. Andersson, and P. Dulski, “Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa,” Geochim. Cosmochim. Acta 72, 378–394 (2008).

    Article  Google Scholar 

  • S. D. Alibo, and Y. Nozaki, “Rare earth elements in seawater: particle association, shale normalization, and Ce oxidation,” Geochim. Cosmochim. Acta 63, 363–372 (1999).

    Article  Google Scholar 

  • R. Anderson, M.P. Bacon, P.G. Brewer, “Removal of 230Th and 234Pb at ocean margins,” Earth Planet. Sci. Lett. 66, 73–90 (1983).

    Article  Google Scholar 

  • J. S. Armstrong-Altrin, S. P. Verma, J. Madhavaraju, Y. I. Lee, and S. Ramasamy, “Geochemistry of Late Miocene Kudankulam limestones, South India,” Int. Geol. Rev. 45, 16–26 (2003).

    Article  Google Scholar 

  • U. C. Barnes and J. R. Cochran, “Uranium removal in oceanic sediments and the oceanic U balance,” Earth Planet. Sci. Lett. 97, 94–101 (1990).

    Article  Google Scholar 

  • M. Bau, “Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium,” Chem. Geol. 93, 219–230 (1991).

    Article  Google Scholar 

  • M. Bau, and P. Dulski, “Anthropogenic origin of positive gadolinium anomalies in river waters,” Earth Planet. Sci. Lett. 143, 245–255 (1996).

    Article  Google Scholar 

  • A. Bellanca, D. Masetti, and R. Neri, “Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy) assessing REE sensitivity to environmental changes,” Chem. Geol. 141, 141–152 (1997).

    Article  Google Scholar 

  • C. J. Bertram, and H. Elderfield, “The geochemical balance of the rare earth elements and neodymium isotopes in the oceans,” Geochim. Cosmochim. Acta 57, 1957–1986 (1993).

    Article  Google Scholar 

  • R. Bolhar, B. S. Kamber, S. Moorbath, C. M. Fedo, M. J. Whitehouse, “Characterisation of early Archaean chemical sediments by trace element signatures,” Earth Planet. Sci. Lett. 222, 43–60 (2004).

    Article  Google Scholar 

  • R. Bolhar, and M. J. V. Kranendonk, “A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates,” Precambrian Res., 155, 229–250 (2007).

    Article  Google Scholar 

  • K. C. Condie, “Another Look at Rare-Earth Elements in Shales” Geochim. Cosmochim. Acta, 55 (9), 2527–2531 (1991).

    Article  Google Scholar 

  • H. J. W. De Baar, M. P. Bacon, and P. G. Brewer, “Rare earth elements in the Pacific and Atlantic oceans,” Geochim. Cosmochim. Acta, 49, 1943–1959 (1985).

    Article  Google Scholar 

  • H. J. W. De Baar, C. R. German, H. Elderfield, and P. Van Gaans, “Rare earth element distributions in anoxic waters of the Cariaco Trench,” Geochim. Cosmochim. Acta 52, 1203–1219 (1988).

    Article  Google Scholar 

  • H. Elderfield, “The oceanic chemistry of the rare-earth elements Philos” Trans. Royal Soc. London, 325, 105–126(1988).

    Article  Google Scholar 

  • H. Elderfield, and M. J. Greaves, “The rare earth elements in seawater,” Nature 296, 214–219 (1982).

    Article  Google Scholar 

  • H. Elderfield, and R. Pagett, “Rare earth elements in icthyoliths: variations with redox conditions and depositional environments” Sci. Total Environ. 49, 175–197 (1986).

    Article  Google Scholar 

  • H. Elderfield, R. Upstill-Goddard, and E. R., Sholkovitz, “The rare-earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters,” Geochim. Cosmochim. Acta 54, 971–991 (1990).

    Article  Google Scholar 

  • R. W., Fairbridge, “The Encyclopedia of Geochemistry and environmental sciences,” New York: Van Nostrand Reinhold Company, 1972.

    Google Scholar 

  • R. Frei, P. S. Dahl, E. F. Duke, K. M. Frei, T. R. Hansen, M. M. Frandsson, and L. A. Jensen, “Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota, USA): assessment of chemical change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise of atmospheric oxygen,” Precambrian Research 162, 441–474 (2008).

    Article  Google Scholar 

  • C. R. German and H. Elderfield, “Application of Ce anomaly as a paleoredox indicator: the ground rules,” Paleoceanography 5, 823–833 (1990).

    Article  Google Scholar 

  • C. R. German, N. C. Higgs, J. Thomson, R. Mills, H. Elderfield, J. Blusztajn, A. P. Fleer, and A. P. Bacon, “A geochemical study of metalliferous sediment from the TAG hydrothermal mound, 26°08′ N, Mid-Atlantic Ridge,” J. Geophys. Res. 98, 9683–9692 (1993).

    Article  Google Scholar 

  • P. Grandjean, H. Cappetta, A. Michard, F. Albarede, “The assessment of REE patterns and 143Nd/144Nd ratios in fish remains,” Earth Planet. Sci. Lett. 84, 181–196 (1987).

    Article  Google Scholar 

  • P. Grandjean, H. Cappetta, F. Albarède, “The REE and Nd of 40–70 Ma old fish debris from the West-African platform,” Geophys. Res. Lett. 15, 389–392 (1988).

    Article  Google Scholar 

  • M. J. Greaves, H. Elderfield, and E. R. Sholkovitz, “Aeolian sources of rare earth elements to the Western Pacific Ocean,” Marine Chem. 68, 31–38 (1999).

    Article  Google Scholar 

  • B. S. Kamber and G. E. Webb, “The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history,” Geochim. Cosmochim. Acta 65, 2509–2525 (2001).

    Article  Google Scholar 

  • Y. Kato, K. Nakao, and Y. Isozaki, “Geochemistry of Late Permian Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change,” Chem. Geol. 182, 15–34 (2002).

    Article  Google Scholar 

  • G. P. Klinkhammer, H. Elderfield, and A. Hudson, “Rare earth elements in seawater near hydrothermal vents,” Nature 305, 185–188 (1983).

    Article  Google Scholar 

  • G. P. Klinkhammer and M. R. Palmer, “Uranium in the ocean, where it goes and why,” Geochim. Cosmochim. Acta 55, 1799–1806 (1991).

    Article  Google Scholar 

  • M. G. Lawrence, A. Greig, K. D. Collerson, and B. S. Kamber, “Rare earth element and yttrium variability in South East Queensland waterways,” Aquat. Geochem. 12, 39–72 (2006).

    Article  Google Scholar 

  • Y. G. Liu, M. R. U. Miah, and R. A. Schmitt, “Cerium, a chemical tracer for paleo-oceanic redox conditions,” Geochim. Cosmochim. Acta 52, 1361–1371 (1988).

    Article  Google Scholar 

  • S. M. McLennan, “Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes,” Rev. Mineral. Geochem. 21, 169–200 (1989).

    Google Scholar 

  • J. Madhavaraju and S. Ramasamy, “Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu,” J Geol Soc India 54, 291–301 (1999).

    Google Scholar 

  • J. Madhavaraju, Y. I. Lee, “Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery Basin, southeastern India: Implications on provenance and paleoredox conditions,” Rev. Mex. Cienc. Geol. 26, 380–394 (2009).

    Google Scholar 

  • J. Madhavaraju, C. M. González-León, Y. I. Lee, J. S. Armstrong-Altrin, and L.M. Reyes-Campero, “Geochemistry of the Mural Formation (Aptian–Albian) of the Bisbee Group, Northern Sonora, Mexico,” Cretaceous Res. 31, 400–414 (2010).

    Article  Google Scholar 

  • J. Madhavaraju and C. M. González-León, “Depositional conditions and source of rare earth elements in carbonate strata of the Aptian–Albian Mural Formation, Pitaycachi section, northeastern Sonora, Mexico,” Rev. Mex. Cienc. Geol. 29, 478–491 (2012).

    Google Scholar 

  • A. Michard, F. Albarede, G. Michard, J. F. Minister, and J. L. Charlou, “Rare earth elements and uranium in high temperature solutions from East-Pacific Rise hydrothermal vent field (13° N),” Nature 303, 795–797 (1983).

    Article  Google Scholar 

  • S. Morad, I. S. Al-Aasm, M. Sirat, and M. M. Sattar, “Vein calcite in Cretaceous carbonate reservoirs of Abu Dhabi: Record oforigin of fluids and diagenetic conditions,” J. Geochem. Exp. 106, 156–170 (2010).

    Article  Google Scholar 

  • R. W. Murray, M. R. Buchholtz Brink, M. R. Brink, D. L. Jones, D. C. Gerlach, and G. P. Russ III, “Rare earth elements as indicators of different marine depositional environments in chert and shale,” Geology 18, 268–271 (1990).

    Article  Google Scholar 

  • R. W. Murray, M. R. Buchholtz Brink, M. R. Brink, D. C. Gerlach, G. P. Russ III, and D. L. Jones, “Rare earth, major and trace elements in chert from the Franciscan complex and Monterey group, California: assessing REE sources to fine grained marine sediments,” Geochim. Cosmochim. Acta 55, 1875–1895 (1991b).

    Article  Google Scholar 

  • R. W. Murray, M. R. Buchholtz Ten Brink, D. C. Gerlach, G. P. Russ III, and D. L. Jones, “Interoceanic variation in the rare earth, major and trace element depositional chemistry of chert: perspectives gained from the DSDP and ODP record,” Geochim. Cosmochim. Acta 56, 1897–1913 (1992).

    Article  Google Scholar 

  • R. Nagarajan, J. Madhavaraju, J.S. Armstron-Altrin, R. Nagendra, “Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India,” Geosci. J. 15, 9–25 (2011).

    Article  Google Scholar 

  • B. N. Nath, I. Roelandts, M. Sudhakar, and W.L. Plueger, “Rare Earth Element patterns of the Central Indian Basin sediments related to their lithology,” Geophys. Res. Lett. 19, 1197–1200 (1992).

    Article  Google Scholar 

  • B. N. Nath, M. Bau, B. Ramalingeswara Rao, and Ch.M. Rao, “Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone,” Geochim. Cosmochim. Acta 61, 2375–2388 (1997).

    Article  Google Scholar 

  • L. D. Nothdurft, G. E. Webb, and B. S. Kamber, “Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater proxy in ancient limestones,” Geochim. Cosmochim. Acta 68, 263–283 (2004).

    Article  Google Scholar 

  • Y. Nozaki, Y. Horibe, and H. Tsubota, “The water column distribution of thorium isotopes in the western North Pacific,” Earth Planet. Sci. Lett. 54, 203–216 (1981).

    Article  Google Scholar 

  • Y. Nozaki, D. Lerche, D. S. Alibo, and A. Snidvongs, “The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand,” Geochim. Cosmochim. Acta 64, 3983–3994 (2000).

    Article  Google Scholar 

  • D. K. Pandey and B. Bhadu, “Outcrop based study to infer depositional environments and sequence stratigraphic framework of Paleogene sediments of Jaisalmer Basin, NW India,” ONGC Bull 45, 39–46 (2010).

    Google Scholar 

  • A. Patra, B.P. Singh, and V. K. Srivastava, “Provenance of the late Paleocene Sandstones of the Jaisalmer Basin, Western India,” J. Geol. Soc. India 83,657–664 (2014).

    Article  Google Scholar 

  • A. Patra and B. P. Singh, “Facies characteristics and depositional environment of the Paleocene-Eocene strata of the Jaisalmer Basin, Western India,” Carbonates Evaporites 30, 331–346 (2015).

    Article  Google Scholar 

  • D. J. Piepgras and S. B. Jacobsen, “The behaviour of rare earth elements in seawater: precise determination of variations in the North Pacific water column,” Geochim. Cosmochim. Acta 56, 1851–1862 (1992).

    Article  Google Scholar 

  • D. Z. Piper, “Rare earth elements in the sedimentary cycle, a summary,” Chem. Geol. 14, 285–304 (1974a).

    Article  Google Scholar 

  • D. Z. Piper, “Rare earth elements in ferromanganese nodules and other marine phases,” Geochim. Cosmochim. Acta 38, 1007–1022 (1974b).

    Article  Google Scholar 

  • H. Rahman, “Geology of Petroleum in Pakistan,” Proceedings of 6th W.P.C, Section I, 659–683 (1963).

    Google Scholar 

  • R. J. Reeder, “Crystal chemistry of the rhombohedral carbonates,” Mineral. Soc. America, Rev. 11, 1–48 (1983).

    Google Scholar 

  • H. E. Reineck, I. B. Singh, Depositional sedimentary environments, Berlin: Springer, 1980.

    Book  Google Scholar 

  • A. B. Roy and S. R. Jakhar, Geology of Rajasthan (Northwest India): Precambrian to Recent, (Scientific Publishers (India), Science, 2002).

    Google Scholar 

  • A. Sarkar, S. K. Bhattacharya, and M. M. Sarin, “Geochemical evidence for anoxic deep sea water in the Arabian Sea during the last glaciations,” Geochim. Cosmochim. Acta 57, 1009–1016 (1993).

    Article  Google Scholar 

  • M. Scherer, and H. Seitz, “Rare-earth element distribution in Holocene and Pleistocene corals and their distribution during diagenesis,” Chem. Geol. 28, 279–289 (1980).

    Article  Google Scholar 

  • J. Schieber, “Redistribution of rare earth elements during diagenesis of carbonate rocks from Mid-Proterozoic Newland Formation, Montana, USA,” Chem. Geol. 69, 111–126 (1988).

    Article  Google Scholar 

  • G. Shields, and P. Stille, “Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites,” Chem. Geol. 175, 29–48 (2001).

    Article  Google Scholar 

  • G. A. Shields, and G. E. Webb, “Has the REE composition of seawater changed over geologic time,” Chem. Geol. 204, 103–107 (2004).

    Article  Google Scholar 

  • E. R. Sholkovitz, “Rare earth elements in the sediments of the North Atlantic Ocean, Amazon delta, and East China Sea: reinterpretation of terrigenous input patterns to the oceans,” Am. J Sci. 288, 236–281 (1988).

    Article  Google Scholar 

  • E. R. Sholkovitz, “Rare earth elements in marine sediments and geochemical standards,” Chem. Geol. 88, 333–347 (1990).

    Article  Google Scholar 

  • E. R. Sholkovitz, W. M. Landing, and B. L. Lewis, “Ocean particle chemistry: the fractionation of the rare earth elements between suspended particles and seawater,” Geochim. Cosmochim. Acta 58, 1567–1580 (1994).

    Article  Google Scholar 

  • K. Siby, B. N. Nath, V. Ramaswamy, D. Naman, T. Gnaneshwar Rao, K. A. Kamesh Raju, K. Selvaraj, and C. T. A. Chen, “Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman back arc basin,” Mar. Geol. 247, 178–193 (2008).

    Article  Google Scholar 

  • N. P. Singh “Cenozoic lithostratigraphy of the Jaisalmer Basin, Rajasthan,” J. Paleont. Soc. India 52 (2), 129–154 (2007).

    Google Scholar 

  • B. P. Singh, J. S. Pawar, and A. Patra, “Geochemistry of Late Eocene/Oligocene calcretes (caliche) of the northwestern Himalaya, India,” J. Him. Earth Sci. 34(2), 135–140 (2013).

    Google Scholar 

  • B. L. K. Somayajulu, D. N. Yadav, M. M. Sarin, “Recent sedimentary records from the Arabian sea,” Proc. Indian Acad. Sci. (Earth Planet. Sci.) 103, 315–327 (1994).

    Google Scholar 

  • S. R. Taylor, and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell Scientific Publications, Oxford, 1985).

    Google Scholar 

  • K. Toyoda, Y. Nakamura, A. Masuda, “Rare earth elements of Pacific pelagic sediments,” Geochim. Cosmochim. Acta 54, 1093–1103 (1990).

    Article  Google Scholar 

  • G. E. Webb and B. S. Kamber, “Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy,” Geochim. Cosmochim. Acta 64, 1557–1565 (2000).

    Article  Google Scholar 

  • P. B. Wignall and K. J. Myers, “Interpreting the benthic oxygen levels in mudrocks, a new approach,” Geology 16, 452–455 (1988).

    Article  Google Scholar 

  • J. Wright, R. S. Seymour, and H. F. Shaw, “REE and neodymium isotopes in conodont apatite Variation with geological age and depositional environment,” Geol. Soc. America Spec. Pap. 196, 325–340 (1984).

    Article  Google Scholar 

  • J. Zhang and Y. Nozaki, “Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean,” Geochim. Cosmochim. Acta 60, 4631–4644 (1996).

    Article  Google Scholar 

  • J. Wright, R. S. Seymour, and H. F. Shaw, “REE and neodymium isotopes in conodont apatite Variation with geological age and depositional environment,” Geol. Soc. Am. Spec. Pap. 196, 325–340 (1984).

    Google Scholar 

  • J. Zhang, and Y. Nozaki, “Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean,” Geochim. Cosmochim. Acta 60, 4631–4644 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Patra.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, A., Singh, B.P. Geochemistry of the Eocene limestones of the Jaisalmer basin, Rajasthan, India: Implications on depositional conditions and sources of rare earth elements. Geochem. Int. 55, 1180–1192 (2017). https://doi.org/10.1134/S0016702917120023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917120023

Keywords

Navigation