Skip to main content
Log in

Physicochemical parameters and geochemical features of fluids of precamrbian gold deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper analyzes literature data on physicochemical parameters and chemical composition of fluids of Precambrian endogenous gold deposits. The average values and ranges of temperature, pressure, and salinity of fluids from the Archean and Proterozoic gold deposits are estimated. It is revealed that fluids of Archean deposits are dominated by methane, while those of Proterozoic deposits, by nitrogen. It is proposed that the accumulation of nitrogen in the atmosphere is related to the intense nitrogen degassing from the Earth’s interior. The highest pressures of endogenous fluids in this period could reflect specifics of deep geodynamics of the planet in the Proterozoic. The large gold deposits (>100 tons) are characterized by narrower range of physicochemical parameters as compared to small deposits. The contribution of heated chloride brines in the formation of majority of large Proterozoic deposits is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Aberg, “A fluid inclusion study of Proterozoic gold-bearing quartz veins, Falun,” XI Symposium ECROFI, Firenze, Sweden, 1991 (Firenze, 1991), p. 1.

    Google Scholar 

  • E. Alm, C. Broman, K. Billstrom, K. Sundblad, and P. Torssander, “Fluid characteristics and genesis of early Neoproterozoic orogenic gold-quartz veins in the Harnas area, southwestern Sweden,” Econ. Geol. 98, 1311–1328 (2003).

    Article  Google Scholar 

  • K. M. Ansdell and T. K. Kyser, “Mesothermal gold mineralization in a Proterozoic greenstone belt: western Flin Flon Domain, Saskatchewan, Canada,” Econ. Geol. 87, 1496–1524 (1992).

    Article  Google Scholar 

  • K. M. Ansdell and T. K. Kyser, “The geochemistry and fluid history of the Proterozoic Laurel Lake Au–Ag deposit, Flin Flon greenstone belt,” Can. J. Earth Sci. 28, 155–171 (1991).

    Article  Google Scholar 

  • D. E. L. Baker and P. K. Seccombe, “Physical conditions of gold deposition at the McPhees deposit, Pilbara Craton, western Australia: Fluid inclusion and stable isotope constraints,” Can. Mineral. 42, 1405–1441 (2004).

    Article  Google Scholar 

  • T. Baker, “Alteration, mineralization, and fluid evolution at the Eloise Cu–Au deposit, Cloncurry district, Northwest Queensland, Australia,” Econ. Geol. 93, 1213–1236 (1998).

    Article  Google Scholar 

  • T. M. Baker, Bertelli, T. Blenkinsop, J. S. Cleverley, J. McLellan, M. Nugus, and D. Gillen, “P–T–X conditions of fluids in the Sunrise Dam gold deposit, Western Australia, and implications for the interplay between deformation and fluids,” Econ. Geol. 105, 873–894 (2010).

    Article  Google Scholar 

  • E. N. Bastrakov, R. G. Skirrow, and G. J. Davidson, “Fluid evolution and origin of iron oxide Cu–Au prospects in the Olympic Dam district, Gawler craton, South Australia,” Econ. Geol. 102, 1415–1440 (2008).

    Article  Google Scholar 

  • K. Billstrom, C. Broman, E. Jonsson, C. Recio, A. J. Boyce, and P. Torssander, “Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted Bjorkdal Au deposit, northern Sweden,” Int. J. Earth Sci. 98, 1027–1052 (2009).

    Article  Google Scholar 

  • R. S. Blewett, D. L. Huston, T. P. Mernagh, and J. Kamprad, “The diverse structure of Archean lode gold deposits of the southwest Mosquito Creek belt, East Pilbara Craton, Western Australia,” Econ. Geol. 97, 787–800 (2002).

    Article  Google Scholar 

  • M.-C. Boiron, M. Cathelineau, and J.-J. Trescases, “Conditions of gold-bearing arsenopyrite crystallization in the Villeranges basin, Marche-Combrailles shear zone, France: a mineralogical and fluid inclusion study,” Econ. Geol. 84, 1340–1362 (1989).

    Article  Google Scholar 

  • A.-M. Boullier, K. Firdaous, and F. Robert, “On the significance of aqueous fluid inclusions in gold-bearing quartz vein deposits from the southeastern Abitibi subprovince (Quebec, Canada),” Econ. Geol. 93, 216–233 (1998).

    Article  Google Scholar 

  • P. Buchholz, T. Oberthur, V. Luders, and J. Wilkinson, “Multistage Au–As–Sb mineralization and crustalscale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: A combined geochemical, mineralogical, stable isotope, and fluid inclusion study,” Econ. Geol. 102, 347–378 (2007).

    Article  Google Scholar 

  • A. R. Budd and R. G. Skirrow, “The nature and origin of gold deposits of the Tarcoola Goldfield and implications for the central Gawler gold province, South Australia,” Econ. Geol. 102, 1541–1563 (2007).

    Article  Google Scholar 

  • D. R. Burrows and E. T. C. Spooner, “Generation of a magmatic H2O–CO2 fluid enriched in Mo, Au, and W within an Archean sodic granodiorite stock, Mink Lake, northwestern Ontario,” Econ. Geol. 82, 1931–1957 (1987).

    Article  Google Scholar 

  • Y. M. Coullbaly, C. Boiron, M. Cathelineau, and A. N. Kouamelan, “Fluid immiscibility and gold deposition in the Birimian quartz veins of the Angovia deposit (Yaoure, Ivory Coast), J. Afr. Earth Sci. 50, 234–254 (2008).

    Article  Google Scholar 

  • M. G. Coutinho N. D. H. M. Alderton, “Character and genesis of Proterozoic shear zone-hosted gold deposits in Borborema Province, northeast Brazil,” Transact. Inst. Mining Metallurg. Section B 107, B109–B119 (1998).

    Google Scholar 

  • J. Z. Dai, K. Y. Wang, and X. M. Cheng, “Geochemical features of ore-forming fluids in the Jiapigou gold belt, Jilin province,” Acta Petrol. Sinica 23, 2198–2206 (2007).

    Google Scholar 

  • G. J. Davidson, H. Paterson, S. Meffre, and R. F. Berry, “Characteristics and origin of the Oak Dam East breccia-hosted, iron oxide Cu–U–(Au) deposit: Olympic Dam region, Gawler craton, South Australia,” Econ. Geol. 102, 1471–1498 (2007).

    Article  Google Scholar 

  • C. E. De Ronde, J. E. T. C. Spooner, M. J. De Wit, and C. J. Bray, “Shear zone-related, Au quartz vein deposits in the Barberton greenstone belt, South Africa: field and petrographic characteristics, fluid properties and light stable isotope geochemistry,” Econ. Geol. 87, 366–402 (1992).

    Article  Google Scholar 

  • P. Dhamelincourt, J.-M. Beny, J. Dubessy, and B. Poty, « Analyse d’inclusions fluides a la microsonde MOLE a effet Raman,” Bull. Mineral. 102, 600–610 (1979).

    Google Scholar 

  • A. M. Dreher, R. P. Xavier, B. E. Taylor, and S. L. Martini, “New geologic, fluid inclusion and stable isotope studies on the controversial Igarape Bahia Cu–Au deposit, Carajas Province, Brazil,” Mineral. Deposita 43, 161–184 (2008).

    Article  Google Scholar 

  • A. L. Dugdale and Hagemann, S. G. “The Bronzewing lode-gold deposit, Western Australia: P–T–X evidence for fluid immiscibility caused by cyclic decompression in gold-bearing quartz-veins,” Chem. Geol. 173, 59–90 (2001).

    Article  Google Scholar 

  • P. Duuring, S. G. Hagemann, K. F. Cassidy, and C. A. Johnson, “Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemitekomatiite contact at Tarmoola, Western Australia,” Econ. Geol. 99, 423–451 (2004).

    Article  Google Scholar 

  • H.-R. Fan, D. I. Groves, E. J. Mikucki, and N. J. McNaughton, “Contrasting fluid types at the Nevoria gold deposit in the Southern Cross greenstone belt, Western Australia: Implications of auriferous fluids depositing ores within an Archean banded iron-formation,” Econ. Geol. 95, 1527–1536 (2000).

    Google Scholar 

  • J. M. Fedorowich, Stauffer, and R. Kerrich, “Structural setting and fluid characteristics of the Proterozoic Tartan Lake gold deposit, Trans-Hudson orogen, Northern Manitoba,” Econ. Geol. 86, 1434–1467 (1991).

    Article  Google Scholar 

  • M. A. D. Ferrari and A. Choudhuri, “Structural controls on gold mineralisation and the nature of related of the Paiol gold deposit, Almas Greenstone Belt, Brazil,” Ore Geol. Rev. 24, 173–197 (2004).

    Article  Google Scholar 

  • M. P. Field, R. Kerrich, and T. K. Kyser, “Characteristics of barren quartz veins in the Proterozoic La Ronge Domain, Saskatchewan, Canada: a comparison with auriferous counterparts,” Econ. Geol. 93, 602–616 (1998).

    Article  Google Scholar 

  • G. L. Fraser, R. G. Skirrow, A. Schmidt-Mumm, and O. Holm, “Mesoproterozoic gold in the central Gawler craton, South Australia: geology, alteration, fluids, and timing,” Econ. Geol. 102, 1511–1539 (2008).

    Article  Google Scholar 

  • A. D. Genkin, F. E. Wagner, T. L. Krylova, and A. I. Tsepin, “Gold-bearing arsenopyrite and its formation condition at the Olympiada and Veduga gold deposits (Yenisei Range, Siberia),” Geol. Ore Deposits 44, 52–69 (2002).

    Google Scholar 

  • S. A. Gleeson and M. P. Smith, “The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates,” Geochim. Cosmochim. Acta 73, 5658–5672 (2009).

    Article  Google Scholar 

  • R. J. Goldfarb, D. I. Groves, and S. Gardoll, “Orogenic gold and geologic time: a global synthesis,” Ore Geol. Rev. 18, 1–75 (2001).

    Article  Google Scholar 

  • B. I. Gongalsky, Yu. G. Safonov, N. A. Krivolutskaya, V. Yu. Prokof’ev, and A. A. Yushin, “A new type of gold–platinum–copper mineralization in northern Transbaikalia,” Dokl. Earth Sci. 414, 671–674 (2007).

    Article  Google Scholar 

  • J. J. Guha, Leroy, and D. Guha, “Significance of fluid phases associated with shear zone Cu–Au mineralisation in the Dore lake complex, Chibougamau, Quebec,” Bull. Mineral. 102, 569–576 (1979).

    Google Scholar 

  • S. G. Hagemann and V. Luders, “Antimony-gold mineralization at the epizonal Wiluna lode-gold deposits, Western Australia: infrared microthermometric constraints on the P–T–X conditions of stibnite mineralization,” Terra Nostra: ECROFI XV, No. 6, 140–142 (1999).

    Google Scholar 

  • S. G. Hagemann, and V. Luders, “P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: conventional and infrared microthermometric constraints,” Mineral. Deposita 38, 936–952 (2003).

    Article  Google Scholar 

  • N. Q. Hammond, L. Robb, S. Foya, and D. Ishiyama, “Mineralogical, fluid inclusion and stable isotope characteristics of Birimian orogenic gold mineralization at the Morila mine, Mali, West Africa,” Ore Geol. Rev. 39, 218–229 (2011).

    Article  Google Scholar 

  • K. A. A. Hein, K. Zaw, and T. P. Mernagh, “Linking mineral and fluid inclusion paragenetic studies: The Batman deposit, Mt. Todd (Yimuyn Manjerr) goldfield, Australia,” Ore Geol. Rev. 28, 180–200 (2006).

    Article  Google Scholar 

  • M. S. Ibrahim and T. K. Kyser, “Fluid inclusion and isotope systematics of the high-temperature Proterozoic Star Lake lode gold deposit, Northern Saskatchewan, Canada,” Econ. Geol. 86, 1468–1490 (1991).

    Article  Google Scholar 

  • S. E. Kesler and B. H. Wilkinson, “The role of exhumation in the temporal distribution of ore deposits,” Econ. Geol. 101, 919–922 (2006).

    Article  Google Scholar 

  • E. L. Klein and K. Fuzikawa, “Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carara vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: implications for orogenic gold mineralization,” Ore Geol. Rev. 37, 31–40 (2010).

    Article  Google Scholar 

  • E. L. Klein, K. Fuzikawa, J. C. Koppe, and M. S. S. Dantas, “Fluid associated with the Caxias mesothermal gold mineralization, Sao Luis craton, northern Brazil: a fluid inclusion study,” Rev. Bras. Geoc. 30, 322–326 (2000).

    Google Scholar 

  • E. L. Klein, R. A. dos Santos, K. Fuzikawa, and R. S. Angelica, “Hydrothermal fluid evolution and structural control of the Guarim gold mineralisation, Tapajos Province, Amazonian Craton, Brazil,” Mineral. Deposita 36, 149–164 (2001).

    Article  Google Scholar 

  • E. L. Klein, C. Harris, C. Renac, A. Giret, C. A. Moura, and K. Fuzikawa, “Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil,” Mineral. Deposita 41, 160–178 (2006).

    Article  Google Scholar 

  • E. L. Klein, J. W. A. Ribeiro, C. Harris, C. A. V. Moura, and A. Giret, “Geology and fluid characteristics of the Mina Velha and Mandiocal orebodies and implications for the genesis of the orogenic Chega Tudo gold deposit, Gurupi Belt, Brazil,” Econ. Geol. 103, 957–980 (2008).

    Article  Google Scholar 

  • V. Lüders, R. L. Romer, A. R. Cabral, C. Schmidt, D. A. Banks, and J. Schneider, “Genesis of itabiritehosted Au–Pd–Pt-bearing hematite-(quartz) veins, Quadrilatero Ferrifero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U-Pb systematics,” Mineral. Deposita. 40, 289–306 (2005).

    Article  Google Scholar 

  • V. Lüders, R. Klemd, T. Oberthür, and B. Plessen, “Different carbon reservoirs of auriferous fluids in African Archean and Proterozoic gold deposits? Constraints from stable carbon isotopic compositions of quartzhosted CO2-rich fluid inclusions,” Mineral. Deposita 50, 449–454 (2015).

    Article  Google Scholar 

  • T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, “The rise of oxygen in Earth’s early ocean and atmosphere,” Nature 506, 307–315 (2014).

    Article  Google Scholar 

  • T. P. Mernagh, and A. S. Wygralak, “Gold ore-forming of the Tanami region, Northern Australia,” Mineral. Deposita 42, 145–173 (2007).

    Article  Google Scholar 

  • T. P. Mernagh and E. N. Bastrakov, “An evaluation of hydrogen sulfide in orogenic gold fluids and the uncertainties associated with vapor-rich inclusions,” Geofluids 13, 494–505 (2013).

    Article  Google Scholar 

  • T. P. Mernagh, C. A. Heinrich, J. P. Leckie, D. P. Carville, D. J. Gilbert, R. K. Valenta, and L. A. I. Wyborn, “Chemistry of low-temperature hydrothermal gold, platinum, and palladium (uranium) mineralization at Coronation Hill, Northern Territory, Australia,” Econ. Geol. 89, 1053–1073 (1994).

    Article  Google Scholar 

  • T. P. Mernagh, C. A. Heinrich, and E. J. Mikucki, “Temperature gradients recorded by fluid inclusions and hydrothermal alteration at the Mount Chariotte gold deposit, Kalgoorlie, Australia,” Can. Mineral. 42, 1383–1403 (2004).

    Article  Google Scholar 

  • L. C. Miao, Y. M. Qiu, W. M. Fan, F. Q. Zhang, and M. G. Zhai, “Geology, geochronology, and tectonic setting of the Jiapigou gold deposits, southern Jilin Province, China,” Ore Geol. Rev. 28, 137–165 (2005).

    Article  Google Scholar 

  • A. G. Mironov, S. M. Zhmodik, A. A. Borovikov, B. B. Damdinov, B. B. Guntypov, and N. V. Verkhovtseva, “The Kamennoe gold sulfide deposit (northern Transbaikalia, Russia) as a representative of the Riphean epithermal gold–telluride–silver ore mineralization,” Geol. Ore Deposits 46, 353–371 (2004).

    Google Scholar 

  • O. F. Mironova, “Volatile components of natural fluids: evidence from inclusions in minerals: methods and results,” Geochem. Int. 48 (1), 83–90 (2010).

    Article  Google Scholar 

  • B. Mishra and M. K. Panigrahi, “Fluid evolution in the Kolar Gold Field: evidence from fluid inclusion studies,” Mineral. Deposita 34, 173–181 (1999).

    Article  Google Scholar 

  • B. Mishra and N. Pal, “Metamorphism, fluid flux, and fluid evolution relative to gold mineralization in the Hutti-Maski greenstone belt, eastern Dharwar craton, India,” Econ. Geol. 103, 801–827 (2008).

    Article  Google Scholar 

  • B. Mishra, N. Pal, and A. B. Sarbadhikari, “Fluid inclusion characteristics of the Uti gold deposit, Hutti-Maski greenstone belt, southern India,” Ore Geol. Rev. 26, 1–16 (2005).

    Article  Google Scholar 

  • M. J. Morales, R. C. Figueiredo e Silva, L. M. Lobato, S.D. Gomes, C. C. C. O. Gomes, and D. A. Banks, “Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil,” Ore Geol. Rev. 72, 510–531 (2016).

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical formation parameters of hydrothermal mineral deposits: evidence from fluid inclusions. II. Gold, silver, lead, and zinc deposits,” Geochem. Int. 52 (6), 433–455 (2014).

    Article  Google Scholar 

  • V. B. Naumov, Yu. G. Safonov, and O. F. Mironova, “Some tendencies in spatial variation of fluid parameters of the Kolar gold deposit (India),” Geol. Ore Deposits, No. 6, 105–109 (1988).

    Google Scholar 

  • P. Neumayr and S. G. Hagemann, “Hydrothermal fluid evolution within the Cadillac tectonic zone, Abitibi greenstone belt, Canada: relationship to auriferous fluids in adjacent second- and third-order shear zones,” Econ. Geol. 97, 1203–1225 (2002).

    Article  Google Scholar 

  • T. M. Niiranen, Poutiainen, and I. Manttari, “Geology, geochemistry, fluid inclusion characteristics, and U-Pb age studies on iron oxide-Cu–Au deposits in the Kolari region, northern Finland,” Ore Geol. Rev. 30, 75–105 (2007).

    Article  Google Scholar 

  • A. A. Obolensky, L. V. Gushchina, A. S. Borisenko, A. A. Borovikov, G. G. Pavlova, “Antimony in hydrothermal processes: solubility, conditions of transfer, and metal-bearing capacity of solutions,” Russ. Geol. Geophys. 48, 992–1001 (2007).

    Article  Google Scholar 

  • G. R. Olivo and A. E. Williams-Jones, “Genesis of the auriferous C quartz-tourmaline vein of the Siscoe mine, Val d’Or district, Abitibi subprovince, Canada: structural, mineralogical and fluid inclusion constraints,” Econ. Geol. 97, 929–947 (2002).

    Article  Google Scholar 

  • N. Pal and B. Mishra, “Alteration geochemistry and fluid inclusion characteristics of the greenstone-hosted gold deposit of Hutti, Eastern Dharwar Craton, India,” Mineral. Deposita 37, 722–736 (2002).

    Article  Google Scholar 

  • Y. Pan and M. E. Fleet, “Calc-silicate alteration in the Hemlo gold deposit, Ontario: Mineral assemblages, P-T-X constraints, and significance,” Econ. Geol. 87, 1104–1120 (1992).

    Article  Google Scholar 

  • P. A. Polito, Y. Bone, J. D. A. Clarke, and T. P. Mernagh, “Compositional zoning of fluid inclusions in the Archaean Junction gold deposit, Western Australia: a process of fluid-wall-rock interaction?” Austral. J. Earth Sci. 48, 833–855 (2001).

    Article  Google Scholar 

  • M. Poutiainen and S. Partamies, “Fluid evolution of the late Archaean Ramepuro gold deposit in the Ilomantsi greenstone belt in eastern Finland,” Mineral. Deposita 38, 196–207 (2003).

    Article  Google Scholar 

  • V. Yu. Prokof’ev, V. B. Naumov, O. F. Mironova, and N. T. Sokolova, “Study of high-density H2S-bearing fluid inclusions,” Geokhimiya, No. 7, 948–953 (1990).

    Google Scholar 

  • V. Yu. Prokof’ev, Z. B. Afanas’ev, G. F. Ivanova, M. K. Boiron, and H. Marinyak, “Study of fluid inclusions in minerals of the Olimpiada Au–(Sb–W)-deposit (Yenisei Range),” Geokhimiya, No. 7, 1012–1029 (1994).

    Google Scholar 

  • V. Yu. Prokofiev, D. A. Banks, K. V. Lobanov, M. V. Chicherov, and N. N. Akinfiev, “Au-rich fluid inclusions in gold-bearing quartz from the Kola superdeep borehole (SG-3),” Bull. Geol. Soc. Finland, Sp. Vol., 117–118 (2016).

    Google Scholar 

  • J. Ridley, E. J. Mikucki, and D. I. Groves, “Archean lodegold deposits” fluid flow and chemical evolution in vertically extensive hydrothermal systems,” Ore Geol. Rev. 10, 279–293 (1996).

    Article  Google Scholar 

  • F. Robert and W. C. Kelly, “Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec, Canada,” Econ. Geol. 82, 1464–1482 (1987).

    Article  Google Scholar 

  • J. Rotherham, K. L. Blake, I. Cartwright, and P. J. Williams, “Stable isotope evidence for the origin of the Mesoproterozoic Staarra Au–Cu deposit, Cloncurry district, Northwest Queensland,” Econ. Geol. 93, 1435–1449 (1998).

    Article  Google Scholar 

  • M. S. Ruano, R. A. Both, and S. D. Golding, “A fluid inclusion and stable isotope study of the Moonta copper-gold deposits, South Australia: evidence for fluid immiscibility in a magmatic hydrothermal system,” Chem. Geol. 192, 211–226 (2002).

    Article  Google Scholar 

  • I. M. Samson, B. Bas, and P. E. Holm, “Hydrothermal evolution of auriferous shear zones, Wawa, Ontario,” Econ. Geol. 92, 325–342 (1997).

    Article  Google Scholar 

  • M. Santosh, “Ore fluids in the auriferous Champion Reef of Kolar, South India,” Econ. Geol. 81, 1546–1552 (1986).

    Article  Google Scholar 

  • E. S. Schandl and M. P. Gorton, “The Scadding gold mine, east of the Sudbury igneous complex, Ontario: An IOCG-type deposit?” Can. Mineral. 45, 1415–1441 (2007).

    Article  Google Scholar 

  • E. S. Schandl, “The role of saline fluids in base-metal and gold mineralization at the Cobalt Hill Prospect northeast of the Sudbury Igneous Complex, Ontario: A fluid-inclusion and mineralogical study,” Can. Mineral. 42, 1541–1562 (2004).

    Article  Google Scholar 

  • C. Schindler, S. G. Hagemann, D. Banks, T. Mernagh, and A. C. Harris, “Magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related Telfer gold-copper deposit, Paterson Orogen, Western Australia: pressure-temperature-composition constraints on the ore-forming fluids,” Econ. Geol. 111, 1099–1126 (2016).

    Article  Google Scholar 

  • K. L. Shelton, T. A. McMenamy, E. H. P. van Hees, and H. Falck, “Deciphering the complex fluid history of greenstone-hosted gold deposit: fluid inclusion and stable isotope studies of the Giant mine, Yellowknife, Northwest Territories, Canada,” Econ. Geol. 99, 1643–1663 (2004).

    Article  Google Scholar 

  • R. G. Skirrow and J. L. Walshe, “Reduced and oxidized Au–Cu–Bi iron oxide deposits of the Tennant Creek Inlier, Australia: an integrated geologic and chemical model,” Econ. Geol. 97, 1167–1202 (2002).

    Article  Google Scholar 

  • M. P. Smith, S. A. Gleeson, and B. W. D. Yardley, “Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: Contrasting metal behavior in aqueous and aqueous-carbonic brines,” Geochim. Cosmochim. Acta 102, 89–112 (2013).

    Article  Google Scholar 

  • T. J. Smith, P. L. Cloke, and S. E. Kesler, “Geochemistry of fluid inclusions from the McIntyre-Hollinger gold deposit, Timmins, Ontario, Canada,” Econ. Geol. 79, 1265–1285 (1984).

    Article  Google Scholar 

  • A. K. Somarin, S. A. Kissin, D. D. Heerema, and D. J. Bihari, “Hydrothermal alteration, fluid inclusion and stable isotope studies of the North Roby Zone, Lac des lles PGE mine, Ontario, Canada,” Resour. Geol. 59, 107–120 (2009).

    Article  Google Scholar 

  • O. G. Sorokhitin, and S. A. Ushakov, Earth’s Evolution (MGU, Nedra, 2002) [in Russian]..

    Google Scholar 

  • P. A. Studemeister and S. Kilias, “Alteration pattern and fluid inclusions of gold-bearing quartz veins in Archean trondhjemite near Wawa, Ontario, Canada,” Econ. Geol. 82, 429–439 (1987).

    Article  Google Scholar 

  • I. Torresi, R. P. Xavier, D. F. A. Bortholoto, and L. V. S. Monteiro, “Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajas Mineral Province (Brazil): Implications for ore genesis,” Mineral. Deposita 47, 299–323 (2012).

    Article  Google Scholar 

  • T. Uemoto, J. Ridley, Ed. Mikucki, D. I. Groves, and M. Kusakabe, “Fluid chemical evolution as a factor in controlling the distribution of gold at the Archean Golden Crown lode gold deposit, Murchison province, Western Australia,” Econ. Geol. 97, 1227–1248 (2002).

    Article  Google Scholar 

  • A. Vollbrecht, T. Oberthur, J. Ruedrich, and K. Weber, “Microfabric analyses applied to the Witwatersrand gold- and uranium-bearing conglomerates: constraints on the provenance and post-depositional modification of rock and ore components,” Mineral. Deposita 37, 433–451 (2002).

    Article  Google Scholar 

  • J. F. Walsh, S. E. Kesler, D. Duff, and P. L. Cloke, “Fluid inclusion geochemistry of high-grade, vein-hosted gold ore at the Pamour mine, Porcupine camp, Ontario,” Econ. Geol. 83, 1347–1367 (1988).

    Article  Google Scholar 

  • C. Wanhainen, C. Broman, and O. Martinsson, “The Aitik Cu–Au–Ag deposit in northern Sweden: a product of high salinity fluids,” Mineral. Deposita 38, 715–726 (2003).

    Article  Google Scholar 

  • R. P. Xavier and C. E. S. Coelho, “Fluid regimes related to the formation of lode-gold deposits in Rio Itapicuru Greenstone Belt, Bahia: a fluid inclusion review,” Rev. Bras. Geoc. 30, 311–314 (2000).

    Google Scholar 

  • R. P. Xavier, C. L. B. Toledo, B. Taylor, and A. Schrank, “Fluid evolution and gold deposition at the Cuiaba mine, SE Brazil: fluid inclusions and stable isotope geochemistry of carbonates,” Rev. Bras. Geoc. 30, 337–341 (2000).

    Google Scholar 

  • G. Xu and P. J. Pollard, “Origin of CO2-rich fluid inclusions in synorogenic veins from the Eastern Mount Isa Fold Belt, NW Queensland, and their implications for mineralization,” Mineral. Deposita 34, 395–404 (1999).

    Article  Google Scholar 

  • X. M. Yang, D. R. Lentz, G. X. Chi, and T. K. Kyser, “Fluid–mineral reaction in the Lake George granodiorite, New Brunswick, Canada: implications for Au–W–Mo–Sb mineralization,” Can. Mineral. 42, 1443–1464 (2004).

    Article  Google Scholar 

  • T. Zhou, G. N. Phillips, S. Denn, and S. Burke, “Woodcutters goldfield: gold in an Archaean granite, Kalgoorlie, Western Australia,” Austral. J. Earth Sci. 50, 553–569 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokofiev.

Additional information

Original Russian Text © V.Yu. Prokofiev, V.B. Naumov, O.F. Mironova, 2017, published in Geokhimiya, 2017, No. 12, pp. 1069–1087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokofiev, V.Y., Naumov, V.B. & Mironova, O.F. Physicochemical parameters and geochemical features of fluids of precamrbian gold deposits. Geochem. Int. 55, 1047–1065 (2017). https://doi.org/10.1134/S0016702917090063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917090063

Keywords

Navigation