Skip to main content
Log in

Provenance of “Svecofennian” zircons in the Belomorian mobile belt, Baltic shield, and some geodynamic implications

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The provenance of Archean and Paleoproterozoic zircons in the eclogites and related rocks from the Belomorian Belt of the Baltic Shield is considered on the basis of criteria for their equilibrium with melt, garnet and fluid. It is shown that the Paleoproterozoic zircon with low Th/U ratios (<0.1) and extremely low HREE and MREE contents does not match criteria for its equilibrium crystallization with garnet. This zircon crystallized from Zrand Hf-rich fluid that was in disequilibrium with previously formed eclogite assemblages, but equilibrated with amphibole and plagioclase, thus indicating amphiboliterather than eclogitefacies conditions. The input of fluid and its long-term (~100 Ma) circulation in the deep levels of the Archean juvenile crust of the Belomorian belt was triggered by the Lapland–Kola orogeny. After its peak, the rocks of the belt experienced very slow uplift at rates an order of magnitude lower than those in the Phanerozoic orogens. It is found that Late Archean zircon population contains metamorphic zircon, which matches criteria for simultaneous crystallization with garnet, and oceanic protolithic zircon, which was in equilibrium with high-Mg basalt/gabbro of the Archean oceanic crust. This indicates a subduction origin of the Archean eclogites of the Belomorian belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. J. Ague, “Fluid flow in the deep crust,” in Treatise on Geochemistry, Ed. by H. Holland and K. Turekian (Elsevier, Amsterdam, 2003), vol. 3, pp. 195–228.

  • V. Balagansky, I. Gorbunov, S. Mudruk, M. Sidorov, and T. Kartushinskaya “Evolutionary history of the Early Precambrian Salma eclogites, Belomorian Province, Baltic (Fennoscandian) Shield: preliminary results,” in 3rd Int. Conf. “Precambrian Continental Growth & Tectonism” (PCGT–2013). Jhansi. India. IAGR Conf. Series, 16 18–20 (2013).

    Google Scholar 

  • Sh. K. Baltybaev, “Svecofennian orogen of the Fennoscandian Shield: compositional and isotopic zoning and its tectonic interpretation,” Geotectonics 47 (6), 452–464 (2013).

    Article  Google Scholar 

  • E. V. Bibikova, S. B. Bogdanova, V. A. Glebovitskii, S. Claesson, and T. Skiöld, “Evolution of the Belomorian Belt: NORDSIM U-Pb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages,” Petrology 12 (3), 195–210 (2004).

    Google Scholar 

  • E. V. Bibikova, T. Skiöld, S. V. Bogdanova, R. Gorbatchev, and A. Slabunov, “Titanite–rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield,” Precambrian Res. 105, 315–330 (2001).

    Article  Google Scholar 

  • S. V. Bogdanova, “High-grade metamorphism of 2.45–2.4 Ga age in mafic intrusions of the Belomorian belt in the north-eastern Baltic Shield,” in Precambrian Crustal Evolution in the North Atlantic Region, Ed. by T. S. Brewer, Geol. Soc. London. Spec. Publ. 112, 69–90 (1996).

    Google Scholar 

  • P. Bottazzi, M. Tiepolo, R. Vanucci, A. Zanetti, R. Brumm, S. F. Foley, and R. Oberti, “Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE,” Contrib. Mineral. Petrol. 137, 36–45 (1999).

    Article  Google Scholar 

  • J. S. Daly, V. V. Balagansky, M. J. Timmerman, and M. J. Whitehouse, “The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere,” Geol. Soc. London, Mem. 32, 579–598 (2006).

    Article  Google Scholar 

  • D. J. De Paolo, “Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic,” Nature 291, 193–197 (1981).

    Article  Google Scholar 

  • T. Dunn and C. Sen, “Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic system: a combined analytical and experimental study,” Geochim. Cosmochim. Acta 52, 717–733 (1994).

    Article  Google Scholar 

  • W. G. Ernst, “Alpine and Pacific styles of Phanerozoic mountain building: subduction-zone petrogenesis of continental crust,” Terra Nova 17, 165–188 (2005).

    Article  Google Scholar 

  • P. Escola “On the eclogites of Norway with 14 figures in the text and 3 plates,” Videnskapsselskapet, Skrifter.I.Mat.Naturv.Klasse. No. 8. Kristiania, (1921).

    Google Scholar 

  • E. S. Fedorov, “A new group of igneous rocks,” Izv. Mosk. Sel’skokhoz. Inst., No. 1, 12–29 (1986).

    Google Scholar 

  • A. A. Fedotova, E. V. Bibikova and S. G. Simakin, “Ionmicroprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies,” Geochem. Int. 46 (9), 912–928.

  • G. Fraser, D. Ellis, and S. Eggins, “Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks,” Geology 25, 607–610 (1997).

    Article  Google Scholar 

  • B. R. Frost, K. R. Chambarlain, and J. C. Schumacher, “Sphene (titanite): phase relations and role a geochronometer,” Chem. Geol. 172, 131–148 (2000).

    Article  Google Scholar 

  • T. Geisler, U. Schaltegger, and F. Tomaschek, “Re-equilibration of zircon in aqueous fluids and melts,” Elements 3, 43–50 (2007).

    Article  Google Scholar 

  • V. A. Glebovitskii and I. S. Sedova, “Metamorphism of the Belomorian mobile belt”, in Early Precambrian of the Baltic Shield, Ed. by V. A. Glebovitskii (Nauka, St. Petersburg, 2005), pp. 251–257.

    Google Scholar 

  • V. A. Glebovitskii, Yu. V. Miller, G. M. Drugova, R. I. I’lkevich, and A. B. Vrevsky, “The structure and metamorphism of the Belomoride–Lapland collision zone,” Geotectonics 30 (6), 53–63 (1996).

    Google Scholar 

  • S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematics of river water suspended material: implication for crustal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  • C. B. Grimes, B. E. John, M. J. Cheadle, F. K. Mazdab, J. L. Wooden, S. Swapp, and J. J. Schwartz, “On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere,” Contrib. Mineral. Petrol. 158, 757–783 (2009).

    Article  Google Scholar 

  • C. B. Grimes, B. E. John, P. B. Kelemen, F. K. Mazdab, J. L. Wooden, M. J. Cheadle, S. Swapp, K. Hanghøj, and J. J. Schwartz, “Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance,” Geology 35, 643–646 (2007).

    Article  Google Scholar 

  • S. L. Harley and N. M. Kelly, “The impact of zircon–garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains: an example from the Rauer Islands, East Antarctica,” Chem. Geol. 241, 62–87 (2007).

    Article  Google Scholar 

  • S. L. Harley, M. N. Kelly, and A. Möller, “Zircon behavior and the thermal histories of mountain chains,” Elements 3, 25–30 (2007).

    Article  Google Scholar 

  • D. Herwartz, S. G. Skublov, A. V. Berezin, and A. E. Mel’nik, “First Lu-Hf garnet ages of eclogites from the Belomorian mobile belt (Baltic Shield, Russia),” Dokl. Earth Sci. 443 (1), 377–380 (2012)

    Article  Google Scholar 

  • A. W. Hofmann, “Chemical differentiation of the Earth: the relationship between mantle continental crust and oceanic crust,” Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  • K. P. Jochum, N. T. Arndt, and A. W. Hofmann, “Nb–Th–La in komatiites and basalts: constrains on komatiite petrogenesis and mantle evolution,” Earth Planet. Sci. Lett. 107, 272–289 (1991).

    Article  Google Scholar 

  • K. T. M. Johnson, “Experimental cpx/and garnet/melt partitioning of REE and other trace elements at high pressures: petrogenetic implications,” Mineral. Mag. 58, 454–455 (1994).

    Article  Google Scholar 

  • A. D. Johnston and P. J. Wyllie, “Constraints on the origin of Archean trondhjemites based on phase relationships of Nuk gneiss with H2O at 15 kbar,” Contrib. Mineral. Petrol. 100, 35–46 (1988).

    Article  Google Scholar 

  • E. D. Kelly, W. D. Carlson, and J. N. Connelly, “Implications of garnet resorption for the Lu–Hf garnet geochronometer: an example from the contact aureole of the Makhavinekh Lake Pluton, Labrador,” J. Metamorph. Geol. 29, 901–916 (2011).

    Article  Google Scholar 

  • R. Kessel, M. W. Schmidt, P. Ulmer, and T. Pettke, “Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth,” Nature 437, 724–727 (2005).

    Article  Google Scholar 

  • A. N. Konilov, A. A. Shchipansky, and M. V. Mints, “Archaean eclogites from the central part of the Belomorian Mobile Belt, Kola Peninsula, Russia,” Mitt. Österreich. Mineral. Ges. 150, 70 (2005).

    Google Scholar 

  • A. N. Konilov, A. A. Shchipansky, M. V. Mints, T. V. Kaulina, K. A. Dokukina, L. M. Natapov, E. A. Belousova, W. L. Griffin, and S. Y. O’Reilly, “The Salma eclogites from the Belomorian Province, Russia: evidence for HP/UHP metamorphism through the subduction of the Mesoarchean oceanic crust,” in Ultrahigh-Pressure Metamorphism: 25 Years after the Discovery of Coesite and Diamond, Ed. by L. Dobrzhinetskaya, S. W. Faryad, S. Wallis, and S. Cuthbert (Elsevier, Amsterdam, 2011), pp. 635–682.

    Google Scholar 

  • X. Li, L. Zhang, Ch. Wei, and A. I. Slabunov, “Petrology of Archean eclogite complex Salma from Belomorian Province, Russia,” Acta Geol. Sinica 87, 480–481 (2013).

    Google Scholar 

  • B. Lias, S. Duchêne, and J. de Sigouer, “Sm-Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks,” Tectonophysics 342, 1–22 (2001).

    Article  Google Scholar 

  • Y. Luo and J. C. Ayers, “Experimental measurements of zircon/melt trace-element partition coefficients,” Geochim. Cosmochim. Acta 73 (12), 3656–3679 (2009).

    Article  Google Scholar 

  • A. Möller, P. J. O’Brien, A. Kennedy, and A. Kröner, “Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon,” J. Metamorph. Geol. 20, 727–740 (2002).

    Article  Google Scholar 

  • C. E. Manning, “The chemistry of subduction-zone fluids,” Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article  Google Scholar 

  • C. E. Manning, A. Antignano, and H. A. Lin, “Premelting polymerization of crustal and mantle fluids, as indicated by solubility of albite + paragonite + quartz in H2O at 1 GPa and 350–620°C,” Earth Planet. Sci. Lett. 292, 325–336 (2010).

    Article  Google Scholar 

  • L. A. J. Martin, S. Duchne, E. Deloule, and O. Vanderhaeghe, “Mobility of trace elements and oxygen in zircon during metamorphism: consequences for geochemical tracing,” Earth Planet Sci. Lett. 268, 61–174 (2008).

    Google Scholar 

  • L. A. J. Martin, B. J. Wood, S. Turner, and T. Rushmer, “Experimental measurements of trace element partitioning between lawsonite, zoisite, and fluid and their implication for the composition of arc magmas,” J. Petrol. 52 (6), 1049–1075 (2011).

    Article  Google Scholar 

  • A. E. Mel’nik, S. G. Skublov, Yu. B. Marin, A. V. Berezin, and E. S. Bogomolov, “New occurrence of eclogite in the Belomorian Mobile Belt: geology, metamorphic conditions, and isotope age,” Dokl. Earth Sci. 448 (2), 43–53 (2013).

    Google Scholar 

  • K. Mezger, G. N. Hanson, and S. R. Bohlen, “High-precision U-Pb ages of metamorphic rutile: application of cooling history of high-grade terranes,” Earth Planet. Sci. Lett. 96, 106–118 (1989).

    Article  Google Scholar 

  • Yu. V. Miller, and R. I. Mil’kevich, “Fold–nappe structure of the Belomorian zone and its relations with the Karelian granite–greenstone terrain,” Geotektonika, No. 4, 4–25 (1995).

    Google Scholar 

  • M. V. Mints, E. A. Belousova, A. N. Konilov, L. M. Natapov, A. A. Shchipansky, W. L. Griffin, S. Y. O’Reilly, K. A. Dokukina, and T. V. Kaulina, “Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia,” Geology 38, 739–742 (2010).

    Article  Google Scholar 

  • R. C. Newton, C. E. Manning, J. M. Hanchar, and C. V. Colasanti, “Free energy of formation zircon based on solubility measurements at high temperature and pressure,” Am. Mineral. 95, 52–58 (2010).

    Article  Google Scholar 

  • D. Orejana, C. Villaseca, R. Armstrong, and T. E. Jeffris, “Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths: constraints on the tectonothermal evolution of the lower crust under central Spain,” Lithos 124, 103–116 (2011).

    Article  Google Scholar 

  • T. J. Peters, “Experimental and field based investigations into the behavior of zircon in hydrothermal and deeptectonic environments during mountain-building and crustal-evolution events,” PhD dissertation. (Vanderbilt Univ. Nashville, Tennessee, 2012).

    Google Scholar 

  • G. Ranally, “Reology and deep tectonics,” Annal. Gephis. 40 (3), 671–680 (1997).

    Google Scholar 

  • J. F. Rapp, S. Klemme, I. B. Butler, and S. L. Harley, “Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation,” Geology 38, 323–326 (2010).

    Article  Google Scholar 

  • D. Rubatto and J. Hermann, “Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks,” Chem. Geol. 241, 38–61 (2007).

    Article  Google Scholar 

  • D. Rubatto, “Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism,” Chem. Geol. 184, 123–128 (2002).

    Article  Google Scholar 

  • D. Rubatto, and J. Hermann, “Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones,” Geochim. Cosmochim. Acta 67 (12), 2173–2187 (2003).

    Article  Google Scholar 

  • E. E. Scherer, K. L. Cameron, and J. Blichert-Toft, “Lu-Hf garnet geochronology: closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions,” Geochim. Cosmochim. Acta 64, 3413–3432 (2000).

    Article  Google Scholar 

  • A. K. Schmitt, M. R. Perfit, K. H. Rubin, D. F. Stockli, M. C. Smith, L. A. Cotsonika, G. F. Zellmer, W. I. Ridley, and O. M. Lovera, “Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology,” Earth Planet. Sci. Lett. 302, 349–358 (2011).

    Article  Google Scholar 

  • A. A. Shchipansky, “Subduction geodynamics in Archean and formation of diamond-bearing lithospheric keels and early continental crust of cratons,” Geotectonics 46 (2), 122–141 (2012).

    Article  Google Scholar 

  • A. A. Shchipansky, L. I. Khodorevskaya, A. N. Konilov, and A. I. Slabunov, “Eclogites from the Belomorian mobile belt (Kola Peninsula): geology and petrology,” Russ. Geol. Geophys. 53 (1), 1–21 (2012a).

    Article  Google Scholar 

  • A. A. Shchipansky, L. I. Khodorevskaya, A. N. Konilov, and A. I. Slabunov, “The Geochemistry and isotopic age of eclogites from the Belomorian belt (Kola Peninsula): evidence from subducted Archean oceanic crust,” Russ. Geol. Geophys. 53 (3), 262–280 (2012b).

    Article  Google Scholar 

  • I. A. Shcheka and K. F. Karlysheva, Hafnium Chemistry (Naukova Dumka, Kiev, 1973) [in Russian].

    Google Scholar 

  • S. G. Skublov, B. Yu. Astaf’ev, Yu. B. Marin, A. V. Berezin, A. E. Mel’nik, and S. L. Presnyakov, “Data on the age of eclogites from the Belomorian mobile belt at Gridino settlement area,” Dokl. Earth Sci. 439 (6), 1163–1170 (2011b).

    Article  Google Scholar 

  • S. G. Skublov, A. V. Berezin, and A. E. Mel’nik, “Paleoproterozoic eclogites in the Salma area, northwestern Belomorian mobile belt: composition and isotopic geochronologic characteristics of minerals and metamorphic age,” Petrology 19 (5), 470–495 (2011a).

    Article  Google Scholar 

  • S. G. Skublov, A. V. Berezin, Yu. B. Marin, N. G. Rizvanova, E. S. Bogomolov, N. A. Sergeeva, I. M. Vasil’eva, and V. F. Guseva, “Complex isotopic–geochemical (Sm–Nd, U–Pb) study of Salma eclogites,” Dokl. Earth Sci. 434 (6), 1396–1401 (2010b).

    Article  Google Scholar 

  • S. G. Skublov, Yu. B. Marin, A. V. Berezin, A. E. Mel’nik, and I. P. Paderin, “Geochemical peculiarities of some rock-forming minerals during experimental modeling of shock metamorphism,” Dokl. Earth Sci. 432 (1), 638–643. (2010a)

    Article  Google Scholar 

  • A. Slabunov, V. Balagansky, A. Shchipansky, A. Stepanova, S. Egorova, X. Li, N. Berezhnaya, and S. Presnyakov, “U–Pb ages of zircons and baddeleyites from coronitic gabbronorite cross-cutting the Archean Salma eclogite-bearing complex, Belomorian Province, Fennoscandian Shield (first results),” in 3d Int. Conf. “Precambrian Continental Growth & Tectonism” (PCGT–2013). Jhansi. India. IAGR Conf. Series 16 176–177 (2013).

    Google Scholar 

  • A. I. Slabunov, Geology and Geodynamics of Mobile Belts with Reference to the Belomorian Province of the Fennoscandian Shield (Karel’sk. Nauchn. Ts. Ross. Akad. Nauk, Petrozavodsk, 2008) [in Russian].

    Google Scholar 

  • M. A. Smith, E. E. Scherer, and K. Mezger, “Lu-Hf and Sm-Nd garnet geochronology: chronometric closure and implications for dating petrological processes,” Earth Planet. Sci. Lett. 381, 222–233 (2013).

    Article  Google Scholar 

  • A. Stepanova and V. Stepanov, “Paleoproterozoc dyke swarms of the Belomorian Province, eastern Fennoscandian Shield,” Precambrian Res. 183, 602–616 (2010).

    Article  Google Scholar 

  • M. J. Timmerman and J. S. Daly, “Sm-Nd evidence for late Archaean crust formation in the Lapland–Kola Mobile Belt, Kola Peninsula, Russia and Norway,” Precambrian Res. 72, 97–107 (1995).

    Article  Google Scholar 

  • M. P. Tole, “The kinetics of dissolution of zircon (ZrSiO4),” Geochim. Cosmochim. Acta 49, 453–458 (1985).

    Article  Google Scholar 

  • T. Vaczi, L. Nasdala, R. Wirth, M. Mehofer, E. Libowitzky, and T. Hager, “On the breakdown of zircon upon “dry” thermal annealing,” Mineral. Petrol. 97, 129–138 (2009).

    Article  Google Scholar 

  • J. van Hunen and A. P. van der Berg, “Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere,” Lithos 103, 217–235 (2008).

    Article  Google Scholar 

  • O. I. Volodichev, Belomorian Complex of Karelia (Geology and Petrology) (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  • O. I. Volodichev, A. I. Slabunov, E. V. Bibikova, and A. N. Konilov, “Archean eclogites in the Belomorian mobile belt, Baltic Shield,” Petrology 12 (6), 540–560 (2004).

    Google Scholar 

  • M. Wike, C. Schmidt, J. Dubrail, K. Appel, M. Borchert, K. Kvashnina, and C. E. Manning, “Zircon solubility and zirconium complexation in H2O + Na2O + SiO2 ± Al2O3 fluids at high pressure and temperature,” Earth Planet Sci. Lett. 349–350, 15–25 (2012).

    Google Scholar 

  • B. J. A. Willegers, J. A. M. van Gool, J. R. Wijbrans, E. J. Krogstad, and K. Mezger, “Post-tectonic cooling of the Nagssugtoqidian orogen and a comparison of contrasting cooling histories in Precambrian and Phanerozoic orogens,” J. Geol. 110, 503–517 (2002).

    Article  Google Scholar 

  • Zircon, Ed. by J. M. Hanchar and P. W. O Hoskin, Rev. Mineral. Geochem. 53, (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shchipansky.

Additional information

Original Russian Text © A.A. Shchipansky, A.I. Slabunov, 2015, published in Geokhimiya, 2015, No. 10, pp. 888–912.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipansky, A.A., Slabunov, A.I. Provenance of “Svecofennian” zircons in the Belomorian mobile belt, Baltic shield, and some geodynamic implications. Geochem. Int. 53, 869–891 (2015). https://doi.org/10.1134/S0016702915100043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915100043

Keywords

Navigation