Skip to main content
Log in

Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We present results of zircon LA-ICP-MS U–Pb, Lu–Hf, and trace-element study in combination with whole-rock Sm-Nd and Rb-Sr isotope data on the magmatic rocks of the Markov Deep and Ashadze hydrothermal field (Mid-Atlantic Ridge). Zircon from three gabbronorite samples in the Markov Deep defined an U–Pb ages between 0.90 ± 0.02 and 2.00 ± 0.05 Ma, with the youngest age found in the deepest sample. Zircons from four samples of gabbros and trondhjemites of the Ashadze Field have identical ages: from 1.04 ± 0.07 to 1.12 ± 0.09 Ma. Plagioclase troctolite from the Markov Deep (sample I-1069/19) contains exotic zircon grains with ages widely ranging from 90 Ma to 3.2 Ga, which is inconsistent with age of the rocks in the Mid-Atlantic Ridge. Several hypotheses are discussed to explain the origin of such exotic grains, in particular, their formation at mantle depths, or reaching these depths with subducted crust, and others. Experimental study of zirconium solubility shows that the mafic and ultramafic melts could be oversaturated with respect to zirconium only at unrealistically high contents, which usually do not occur in the corresponding rocks. Entrapped xenogenic zircon must be dissolved in the mafic and ultramafic melts and its finds in these rocks presumably indicate its disequilibrium precipitation. Zircon could be formed in the intrusive mafic rocks at the final stages of fractional crystallization, which explains the presence of own zircon in gabbroids. Zircon is very stable in crustal magmatic processes, especially at lowered activity of alkalis, but almost instantly (on geological scale) loses radiogenic lead by diffusion way under upper mantle conditions (1300–1500°C). While applying REE distribution for interpreting zircon origin, as many as possible elements should be analyzed to discriminate between intrinsic zircon element distribution and anomalies caused by defects in its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Aléon, M. Chaussidon, B. Marty, L. Schütz, and R. Jaenicke, “Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport,” Geochim. Cosmochim. Acta 66, 3351–3365 (2002).

    Article  Google Scholar 

  • L. Ya. Aranovich, T. F. Zinger, N. S. Bortnikov, V. E. Sharkov, and A. V. Antonov, “Zircon in gabbroids from the axial zone of the Mid-Atlantic Ridge, Markov Deep, 6 N: correlation of geochemical features with petrogenetic processes,” Petrology 21(1), 1–16 (2013).

    Article  Google Scholar 

  • B. Yu. Astafiev, S. G. Skublov, V. A. Glebovitskii, I. M. Gembitskaya, O. A. Voinova, and O. A. Levchenkov, “Geochemistry of metasomatic zircons from the Terskii Greenstone Belt,” Dokl. Earth Sci. 427(1), 840–845 (2009).

    Article  Google Scholar 

  • A. G. Baines, M. J. Cheadle, B. E. John, C. B. Grimes, J. J. Schwartz, and J. L. Wooden, “SHRIMP Pb/U zircon ages constrain gabbroic crustal accretion at Atlantis Bank on the ultraslow-spreading Southwest Indian Ridge,” Earth Planet. Sci. Lett. 287, 540–550 (2009).

    Article  Google Scholar 

  • E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, and N. I. Fisher, “Igneous zircon: trace element composition as an indicator of source rock type,” Contrib. Mineral. Petrol. 143, 602–622 (2002).

    Article  Google Scholar 

  • V. Beltenev, V. Ivanov, I. Rozhdestvenskaya, et al. “A new hydrothermal field at 13°30′ N on the Mid-Atlantic Ridge,” InterRidge News 16, 9–10 (2007).

    Google Scholar 

  • V. Beltenev, V. Ivanov, I. Rozhdestvenskaya, et al., “New data about hydrothermal fields on the Mid-Atlantic Ridge between 11–14° N: 32nd Cruise of R/V Professor Logatchev,” InterRidge News. 18, 14–18 (2009).

    Google Scholar 

  • P. Betzer, K. Carder, R. Duce, J. Merrill, N. Tindale, M. Uematsu, D. Costello, R. Young, R. Feely, and J. Breland, “Long-range transport of giant mineral aerosol particles,” Nature 336, 568–571 (1988).

    Article  Google Scholar 

  • E. V. Bibikova, The Uranium—Lead Geochronology of the Early Stages of Evolution of Ancient Shields (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  • E. V. Bibikova, S. N. Shilobreeva, T. V. Gracheva, and V. A. Makarov, “Experimental study of U–Pb system behavior in zircon in melt under different physicochemical conditions,” Geokhimiya 34 (8), 1100–1109 (1995).

    Google Scholar 

  • Yu. A. Bogdanov, N. S. Bortnikov, I. V. Vikent’ev, et al., “A new type of modern mineral-forming system: black smokers of the hydrothermal field at 14°45′ N latitude, Mid-Atlantic Ridge,” Geol. Ore Dep. 39 (1), 68–90(1997).

    Google Scholar 

  • E. Bonatti and K. Crane, “Oscillatory spreading explanation of anomalously old uplifted crust near oceanic transforms,” Nature 300, 343–345 (1982).

    Article  Google Scholar 

  • E. Bonatti, D. Brunelli, W. R. Buck, A. Cipriani, P. Fabretti, V. Ferrante, L. Gasperini, and M. Ligi, “Flexural uplift of a lithospheric slab near the Vema transform (Central Atlantic): timing and mechanisms,” Earth Planet. Sci. Lett. 240, 642–655 (2005).

    Article  Google Scholar 

  • N. S. Bortnikov, G. N. Savel’eva, D. I. Matukov, S. A. Sergeev, N. G. Berezhnaya, E. N. Lepekhina, and A. V. Antonov, “The zircon age of plagiogranites and gabbros based on SHRIMP data: Pleistocene intrusion in the MAR rift valley, 5°30.6′–5°32.4′ N,” Dokl. Earth Sci. 404 (1), 1054–1058 (2005).

    Google Scholar 

  • N. S. Bortnikov, E. V. Sharkov, O. A. Bogatikov, T. F. Zinger, E. N. Lepekhina, A. V. Antonov, and S. A. Sergeev, “Finds of young and ancient zircons in gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°54′–5°02.2′ N (results of SHRIMP-II U–Pb dating): implication for deep geodynamics of modern oceans,” Dokl. Earth Sci. 421 (5), 859–866 (2008).

    Article  Google Scholar 

  • A. J. M. Bory, P. E. Biscaye, A. Svensson, and F. E. Grousset, “Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland,” Earth Planet. Sci. Lett. 196, 123–134 (2002).

    Article  Google Scholar 

  • J. R. Cann, D. K. Blackman, D. K. Smith, E. McAllister, B. Janssen, S. Mello, E. Avgerinos, A. R. Pascoe, and J. Escartin, “Corrugated slip surfaces formed at ridgetransform intersections on the Mid-Atlantic Ridge,” Nature 385, 329–332 (1997).

    Article  Google Scholar 

  • D. J. Cherniak and E. B. Watson, “Pb diffusion in zircon,” Chem. Geol. 172, 5–24 (2000).

    Article  Google Scholar 

  • D. J. Cherniak, J. M. Hanchar, and E. B. Watson, “Diffusion of tetravalent cations in zircon,” Contrib. Mineral. Petrol. 127, 383–390 (1997).

    Article  Google Scholar 

  • S. Clement, W. Compston, and G. Newstead, “Design of a large high resolution ion microprobe,” in Int. Conf. SIMS (Munster, 1977), p. 17.

    Google Scholar 

  • F. Corfu, J. M. Hanchar, P. W. O. Hoskin, and P. Kinny, “Atlas of zircon textures,” Rev. Mineral. Geochem. 53, 469–500 (2003).

    Article  Google Scholar 

  • J. Crank, The Mathematics of Diffusion, 2nd Ed. (Clarendon Press, Oxford, 1975).

    Google Scholar 

  • N. M. Evensen, P. J. Hamilton, and R. K. O’Nions, “Rare earth element abundances in chondritic meteorites,” Geochim. Cosmochim. Acta 42, 1199–1212 (1978).

    Article  Google Scholar 

  • R. Feng, N. Machado, and J. Ludden, “Lead geochronology of zircon by laser probe-inductively coupled plasma mass spectrometry (LP-ICPMS),” Geochim. Cosmochim. Acta 57, 3479–3486 (1993).

    Article  Google Scholar 

  • G. B. Fershtater, A. A. Krasnobaev, F. Bea, and P. Montero, “Geochemistry of zircon from magmatic and metamorphic rocks of the Urals,” Litosfera, No. 4, 13–29 (2012).

    Google Scholar 

  • B. J. Fryer, S. E. Jackson, and H. P. Longerich, “The application of laser-ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to insitu (U)-Pb geochronology,” Chem. Geol. 109, 1–8 (1993).

    Article  Google Scholar 

  • T. Geisler, A. A. Rashwan, M. K. W. Rahn, U. Poller, H. Zwingmann, R. T. Pidgeon, H. Schleicher, and F. Tomaschek, “Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt,” Mineral. Mag. 67, 485–508 (2003).

    Article  Google Scholar 

  • W. L. Griffin, N. J. Pearson, E. Belousova, S. E. Jackson, E. Vanachterbergh, S. Y. O’Reilly, and S. R. Shee, “The Hf isotope composition of cratonic mantle—LAM-MC–ICPMS analysis of zircon megacrysts in kimberlites,” Geochim. Cosmochim. Acta 64, 133–147 (2000).

    Article  Google Scholar 

  • C. B. Grimes, B. E. John, P. B. Kelemen, F. K. Mazdab, J. L. Wooden, M. J. Cheadle, K. Hanghøj, and J. J. Schwartz, “Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance,” Geology 35, 643–646 (2007).

    Article  Google Scholar 

  • J. M. Hanchar and E. B. Watson, “Zircon saturation thermometry,” Rev. Mineral. Geochem. 53, 89–112 (2003).

    Article  Google Scholar 

  • P. W. O. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” Rev. Mineral. Geochem. 53, 27–62 (2003).

    Article  Google Scholar 

  • P. W. O. Hoskin, “Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia,” Geochim. Cosmochim. Acta 69, 637–648 (2005).

    Article  Google Scholar 

  • S. E. Jackson, N. J. Pearson, W. L. Griffin, and E. A. Belousova, “The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology,” Chem. Geol. 211, 47–69 (2004).

    Article  Google Scholar 

  • C. Kirkland, Whitehouse, M. and Slagstad, T. “Fluidassisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway,” Contrib. Mineral. Petrol. 158, 637–657 (2009).

    Article  Google Scholar 

  • Yu. A. Kostitsyn, “Terrestrial and chondritic Sm-Nd and Lu-Hf isotopic systems: are they identical?” Petrology 12 (5), 397–411 (2004)

    Google Scholar 

  • Yu. A. Kostitsyn, E. A. Belousova, N. S. Bortnikov, and E. V. Sharkov, “Zircons in gabbroids from the axial zone of the Mid-Atlantic Ridge: U-Pb age and 176Hf/177Hf ratio (results of investigations by the laser ablation method),” Dokl. Earth Sci. 429 (8), 1305–1309 (2009).

    Article  Google Scholar 

  • Yu. A. Kostitsyn, S. A. Silantyev, E. A. Belousova, N. S. Bortnikov, E. A. Krasnova, and M. Kannat, “Time of the formation of the oceanic core complex of the Ashadze hydrothermal field in the Mid-Atlantic Ridge (12°58′ N): evidence from zircon study,” Dokl. Earth Sci. 447 (2), 1301–1305 (2012).

    Article  Google Scholar 

  • A. Liati, D. Gebauer, and C. M. Fanning, “The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages,” Chem. Geol. 207, 171–188 (2004).

    Article  Google Scholar 

  • C. J. Lissenberg, M. Rioux, N. Shimizu, S. A. Bowring, and C. Mevel “Zircon dating of oceanic crustal accretion,” Science 323, 1048–1050 (2009).

    Article  Google Scholar 

  • K. R. Ludwig, “Using Isoplot/Ex, Version 2.01: a geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center Sp. Publ., No. 1a, (1999).

    Google Scholar 

  • Ñ. J. MacLeod, R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows, S. C. Unsworth, K. L. Achenbach, and M. Harris, “Life cycle of oceanic core complexes,” Earth Planet. Sci. Lett. 287, 333–344 (2009).

    Article  Google Scholar 

  • S. I. Nakai, A. N. Halliday, and D. K. Rea, “Provenance of dust in the Pacific Ocean,” Earth Planet. Sci. Lett. 119, 143–157 (1993).

    Article  Google Scholar 

  • J. Pilot, C.-D. Werner, F. Haubrich, and N. Baumann, “Palaeozoic and Proterozoic zircons from the MidAtlantic Ridge,” Nature 393, 676–679 (1998).

    Article  Google Scholar 

  • S. Ríos, E. K. H. Salje, M. Zhang, and R. C. Ewing, “Amorphization in zircon: evidence for direct impact damage,” J. Phys: Condens. Matter. 12, 2401 (2000).

  • D. K. Rea, H. Snoeckx, and L. H. Joseph “Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling,” Paleoceanography 13, 215–224 (1998).

    Article  Google Scholar 

  • P. J. Sack, R. F. Berry, S. Meffre, T. J. Falloon, J. B. Gemmell, and R. M. Friedman, “In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation–inductively coupled plasma–quadrupole mass spectrometry,” Geochem., Geophys., Geosyst. 12, Q0AA14 (2011).

  • U. Schärer, “The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya,” Earth Planet. Sci. Lett. 67, 191–204 (1984).

    Article  Google Scholar 

  • J.-G. Schilling, “Oceanic domains and the mantle,” in Les Isotopes Radiogeniques an Geologie: Chronologie Geochimie, Ed. by J. L. Duthou, (Societe Francaise Min. Crist, Paris, 1992), pp. 1–34.

    Google Scholar 

  • A. K. Schmitt, M. Grove, T. M. Harrison, O. Lovera, J. Hulen, and M. Walters, “The Geysers–Cobb Mountain magma system, California (Part 1): U-Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times,” Geochim. Cosmochim. Acta 67, 3423–3442 (2003).

    Article  Google Scholar 

  • N. Schoolmeesters, M. J. Cheadle, B. E. John, P. W. Reiners, J. Gee, and C. B. Grimes, “The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex,” Geochem., Geophys., Geosyst. 13 (10), doi: 10.1029/2012GC004314 (2012)

    Google Scholar 

  • J. J. Schwartz, B. E. John, M. J. Cheadle, J. L. Wooden, F. Mazdab, S. Swapp, and C. B. Grimes, “Dissolution–reprecipitation of igneous zircon in mid-ocean ridge gabbro, Atlantis Bank, Southwest Indian Ridge,” Chem. Geol. 274, 68–81 (2010).

    Article  Google Scholar 

  • E. V. Sharkov, N. S. Bortnikov, O. A. Bogatikov, B. V. Belyatsky, T. F. Zinger, and S. G. Skolotnev, “Mesozoic zircon from gabbronorites of the axial Mid-Atlantic Ridge, 6° N, Markov Deep,” Dokl. Earth Sci. 397 (5), 654–657 (2004).

    Google Scholar 

  • S. A. Silantyev, E. A. Krasnova, M. Kannat, N. S. Bortnikov, N. N. Kononkova, and V. E. Bel’tenev, “Peridotite–gabbro–trondhjemite association of the MidAtlantic Ridge between 12°58′ and 14°45′ N: Ashadze and Logachev hydrothermal vent fields,” Geochem. Int. 49 (4), 323–354 (2011).

    Article  Google Scholar 

  • S. A. Silantyev, M. V. Mironenko, and A. A. Novoselov, “Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. modeling phase transitions and material balance: downwelling limb of a hydrothermal circulation cell,” Petrology 17 (2), 138–157 (2009).

    Article  Google Scholar 

  • S. G. Skolotnev, A. A. Peyve, N. S. Bortnikov, et al., “Geology of ore-hosting rift deeps near the Sierra Fracture Zone, equatorial Atlantic,” Dokl. Earth Sci. 391 (5), 679–684 (2003).

    Google Scholar 

  • T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T. Yanagi, T. Nakano, and H. Fujimaki, “JNdi-1—a neodymium isotopic reference in consistency with La Jolla neodymium,” Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  • F. Tera and G. J. Wasserburg, “U-Th-Pb systematics in lunar highland samples from 2321 Luna 20 and Apollo 16 missions,” Earth Planet. Sci. Lett. 17, 36–51 (1972).

    Article  Google Scholar 

  • E. van Achterbergh, C. G. Ryanm, and W. L. Griffin, “GLITTER: On-line interactive data reduction for the laser ablation ICP-MS microprobe,” in Proceedings of the 9th V.M. Goldschmidt Conference, Cambridge, US, 1999 (Cambridge, 1999), p. 305.

    Google Scholar 

  • M. Wiedenbeck, P. Allé, F. Corfu, W. L. Griffin, M. Meier, F. Oberli, A. V. Quadt, J. C. Roddick, and W. Spiegel, “Three natural zircon standards for U–Th–Pb, Lu-Hf, trace element and REE analyses,” Geostand. Newslett. 19, 1–23. (1995).

    Article  Google Scholar 

  • I. S. Williams, “Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks,” Trans. R. Soc. Edinburgh: Earth Sci. 83, 447–458 (1992).

    Article  Google Scholar 

  • J. A. Woodhead, G. R. Rossman, and L. T. Silver, “The metamictization of zircon radiation dose-dependent structural characteristics,” Am. Mineral. 76, 74–82 (1991)

    Google Scholar 

  • M. Zhang and E. K. H. Salje, “Infrared spectroscopic analysis of zircon: radiation damage and the metamict state,” J. Phys: Condens. Matter 13, 3057 (2001).

  • T. F. Zinger, N. S. Bortnikov, E. V. Sharkov, and S. E. Borisovskii, “Influence of plastic deformations in zircon on its chemical composition: evidence from gabbroids of the Spreading Zone of the Mid-Atlantic Ridge, Markov Trough, 6 N,” Dokl. Earth Sci. 433 (2), 1098–1103 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kostitsyn.

Additional information

Original Russian Text © Yu.A. Kostitsyn, E.A. Belousova, S.A. Silant’ev, N.S. Bortnikov, M.O. Anosova, 2015, published in Geokhimiya, 2015, No. 9, pp. 771–800.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostitsyn, Y.A., Belousova, E.A., Silant’ev, S.A. et al. Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochem. Int. 53, 759–785 (2015). https://doi.org/10.1134/S0016702915090025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915090025

Keywords

Navigation