Skip to main content
Log in

Pre-Riphean metapelites of the Yenisei Range: Chemical composition, sources of eroded material, and paleogeodynamics

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports data on metapelites (gneisses and crystalline schists) from various Early Precambrian lithostratigraphic units of the Yenisei Range (Kan and Yenisei complexes, Garevka Unit, and Teya Group). A representative selection of 57 samples from the examined vertical section were analyzed for major oxides, LILE, transition elements, HFSE, REE, radioactive elements, and other trace and minor elements. The most important distinctive geochemical feature of metapelites composing most of the vertical section is their elevated concentrations of Al, which are higher than in the Post-Archean Australian Shale (PAAS), K, Rb, Ba, Ga, Sc, Pb, Th, Nb, Y, and REE. These data and the systematics of elements in certain discriminant diagrams testify that the metasedimentary complexes in the sedimentation basin and the rocks associations composing the erosion area (crystalline massifs of the ancient basement of the Siberian craton) were strongly geochemically differentiated and mature. The composition of the eroded crustal material was close to the average composition of the post-Archean continental crust and PAAS. The metapelites of the Kuzeeva Unit in the Kan Complex and Penchenginskaya Formation in the Teya Group were the only ones that could have basic rocks as an additional source of material, as also follows from the elevated Cr concentrations of the rocks and their REE systematics. The three types of REE patterns of the metapelites largely correspond to the composition of the rocks that composed the ancient drainage areas and the degrees of the differentiation and averaging of their terrigenous material. The first predominant type corresponds to PAAS and the averaged composition of the upper continental crust. The second and third types of the REE patterns with high and low LaN/YbN ratios, respectively, and with or without negative Eu anomalies provide evidence of the contribution of tonalite-trondhjemite-granodiorite (TTG) or basite sources typical of granite-greenstone provinces. In certain diagrams, the compositional fields of Early Precambrian metapelites in the Yenisei Range almost exactly coincide with the compositional fields of regional fine-grained Riphean terrigenous rocks. This suggests that the Late Precambrian sedimentary rock sequences inherited their geochemical features from more ancient rocks. The reproduced ancient geodynamic environments in which the Early Precambrian metaterrigenous complexes of the Yenisei Range were accumulated correspond to ensialic continental marginal basins. The rocks of the Kan and Yenisei complexes and the Garevka Unit were formed mostly on active continental margins and, less frequently, on passive margins. The protoliths of metasedimentary rocks of the Teya Group were accumulated in a subplatform environment at a passive margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Taylor and S. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, London, 1985).

    Google Scholar 

  2. R. Cox and D. R. Lowe, “A Conceptual Review of Regional-Scale Controls on the Composition of Clastic Sediments and the Co-Evolution of Crustal Blocks and Their Sedimentary Cover,” J. Sediment. Res. A65, 1–12 (1995).

    Google Scholar 

  3. W. B. Nance and S. R. Taylor, “Rare Earth Element Patterns and Crustal Evolution—I. Australian Post-Archean Sedimentary Rocks,” Geochim. Cosmochim. Acta 40, 1539–1551 (1976).

    Article  Google Scholar 

  4. S. M. McLennan, “Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Ed. by B. R. Lipin and G. A. McKay, Rev. Mineral. 21, 169–200 (1989).

  5. K. C. Condie, “Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  6. K. C. Condie, Plate Tectonics and Crustal Evolution, 4th Edition (Butterworth Heinemann, Oxford, 1997).

    Google Scholar 

  7. R. Cox, D. R. Lowe, and R. L. Cullers, “The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in Southwestern United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).

    Article  Google Scholar 

  8. A. Hofmann, R. Bolnar, P. Dirks, and H. Jelsma, “The Geochemistry of Archean Shales Derived from a Mafic Volcanic Sequence, Belingwe Greenstone Belt, Zimbabwe: Provenance, Source Area Unroofing and Submarine versus Subaerial Weathering,” Geochim. Cosmochim. Acta 67, 421–440 (2002).

    Article  Google Scholar 

  9. A. V. Maslov, A. D. Nozhkin, V. N. Podkovyrov, E. F. Letnikova, O. M. Turkina, D. V. Grazhdankin, N. V. Dmitrieva, M. V. Isherskaya, M. T. Krupenin, Yu. L. Ronkin, E. Z. Gareev, S. V. Veshcheva, and O. P. Lepikhina, Geochemistry of Upper Precambrian Fine-Grained Terrigenous Rocks in North Eurasia (UrO RAN, Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  10. A. V. Maslov, A. D. Nozhkin, V. N. Podkovyrov, E. F. Letnikova, O. M. Turkina, Yu. L. Ronkin, M. T. Krupenin, N. V. Dmitrieva, E. Z. Gareev, O. P. Lepikhina, O. Yu. Popova, “Riphean Fine-Grained Aluminosilicate Clastic Rocks in the Southern Urals, Uchur-Maya Area, and the Yenisei Kryazh: Principal Litho-Geochemical Characteristics,” Geochem. Int. 46, 1117–1144 (2008).

    Article  Google Scholar 

  11. A. V. Maslov, A. D. Nozhkin, V. N. Podkovyrov, E. F. Letnikova, N. V. Dmitrieva, Yu. L. Ronkin, “Clarkes of Concentrations of Trace Elements in the Riphean Fine-Grained Terrigenous Rocks of the Uchur-Maya Region and the Yenisei Range,” Russ. J. Pac. Geol. 4(4), 379–397 (2010).

    Article  Google Scholar 

  12. A. D. Nozhkin, O. M. Turkina, and V. A. Bobrov, “Radioactive and Rare Earth Elements in Metapelites as Indicators of Composition and Evolution of the Precambrian Continental Crust in the Southwestern Margin of the Siberian Craton,” Dok. Earth Sci. 391, 718–722 (2003).

    Google Scholar 

  13. A. D. Nozhkin, A. V. Maslov, V. N. Podkovyrov, O. M. Turkina, E. F. Letnikova, Yu. L. Ronkin, M. T. Krupenin, N. V. Dmitrieva, E. Z. Gareev, O. P. Lepikhina, “Geochemistry of Riphean Terrigenous Rocks in the Southern Urals and Siberia and Variations of the Continental Crust Maturity,” Russ. Geol. Geophys. 50(2), 71–86 (2009).

    Article  Google Scholar 

  14. Yu. A. Kuznetsov, Precambrian Petrology of the Southern Yenisei Range. Selected Papers (Nauka, Novosibirsk, 1988), Vol. 1 [in Russian].

    Google Scholar 

  15. A. D. Nozhkin and O. M. Turkina, Geochemistry of Granulites (OIGGM SO RAN, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  16. A. D. Nozhkin, O. M. Turkina, A. V. Maslov, N. V. Dmitrieva, V. P. Kovach, Yu. L. Ronkin, “Sm-Nd Isotopic Systematics of Precambrian Metapelites from the Yenisei Range and Age Variations of Their Provenances,” Dokl. Earth Sci. 423A, 1492–1494 (2008).

    Google Scholar 

  17. G. G. Lepezin, A. D. Nozhkin, and T. V. Gerya, “Thermodynamic Parameters of the Metamorphism of the Kan Group,” Geol. Geofiz., No. 9, 11–19 (1986).

  18. N. V. Berdnikov, A. A. Tomilenko, T. V. Gerya, L. L. Perchuk, S. K. Koshemchuk, A. D. Nozhkin, “Fluid Regime during the Evolution of Granulites in the Angara-Kan Inlier: Inclusions and the Chemistry of Fluid Phase,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 4, 27–40 (1990).

  19. L. Perchuk, T. Gerya, and A. Nozhkin, “Petrology and Retrograde P-T Path in Granulites of Kanskaya Formation, Yenisey Range, Eastern Siberia,” J. Metamorph. Geol. 7, 599–617 (1989).

    Article  Google Scholar 

  20. E. V. Bibikova, T. V. Gracheva, V. A. Makarov, and A. D. Nozhkin, “Age Frontiers in the Geological Evolution of the Early Precambrian of the Yenisei Range,” Stratigr. Geol. Korrelyatsiya 1(1), 35–40 (1993).

    Google Scholar 

  21. O. M. Rosen, K. C. Condie, L. V. Natapov, and A. D. Nozhkin, “Archean and Early Proterozoic Evolution of the Siberian Craton: A Preliminary Assessment,” in Archean Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1994).

    Google Scholar 

  22. A. D. Nozhkin, “Early Proterozoic Continental Marginal Complexes of the Angara Foldbelt and Features of Their Metallogeny,” Geol. Geofiz. 40(11), 1524–1544 (1999).

    Google Scholar 

  23. Revised Inter-Regional and Regional Correlation Charts of Magmatic and Metamorphic Complexes of the Atai-Sayan Folded System and the Yenisei Range, Ed. by V. L. Khomichev (SNIIGGiMS, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  24. Inter-Regional Correlation Charts of Magmatic and Metamorphic Complexes of the Altai-Sayan Fold System and the Yenisei Range, Ed. by V. L. Khomichev (SNIIG-GiMS, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  25. E. K. Kovrigina and N. S. Podgornaya, Geological Map of the USSR. Scale 1: 1 000 000. Explanatory Notes. Sheet O-46(47) (Leningrad, 1978) [in Russian].

  26. Geochronology of the USSR. Vol. 1 Precambrian, Ed. by Yu. I. Polovinkina (Nedra, Leningrad, 1973) [in Russian].

    Google Scholar 

  27. L. K. Kachevskii, G. I. Kachevskaya, A. A. Storozhenko, V. K. Zuev, A. E. Diner, N. F. Vasil’ev, “The Problem of Distinguishing Archean Metamorphic Complexes in the Transangara Part of the Yenisei Range,” Otechestvennaya Geol., Nos. 11–12, 45–49 (1994).

  28. E. S. Postel’nikov and N. I. Musaibov, “Structure of the Baikalide Basement in the Southwestern Margin of the Siberian Platform,” Geotektonika, No. 6, 37–51 (1992).

  29. A. E. Diner, A. A. Storozhenko, and N. F. Vasil’ev, Reference of the Erudinsky Plagiogranite Complex, Yenisei Range (SNIIGGiMS, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  30. A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, A. A. Terleev, V. V. Khomentovskii, “Proterozoic Granite-Gneiss Domes of the Yenisei Range: Geological Structure and U-Pb Isotopic Age,” Geol. Geofiz. 40(9), 1305–1313 (1999).

    Google Scholar 

  31. I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemistry, Protolith Origin, and Age of Lower Proterozoic Fe- and Al-Rich Metapelites in the Transangarian Yenisei Ridge,” Dokl. Earth. Sci. 433(3), 966–973 (2010).

    Article  Google Scholar 

  32. Legend for the Yenisei Series in the 1: 200 000 State Geological Map of the Russian Federation (Second Edition) (Krasnoyarsk, 1998), p. 197 [in Russian].

  33. M. I. Volobuev, S. I. Zykov, N. I. Stupnikova, V. P. Strizhov, V. L. Myasnikova, “Age of the Basement and Geosynclinal Formations of the Grenvillides in the Yenisei Range,” in Determination of the Isotopic Age of Ore Deposits (Nauka, Moscow, 1976), pp. 39–47 [in Russian].

    Google Scholar 

  34. P. S. Kozlov and G. G. Lepezin, “Petrology, Petrochemistry, and Metamorphism of the Yenisei Range,” Geol. Geofiz. 36(5), 3–22 (1995).

    Google Scholar 

  35. I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Fe- and Al-Rich Metapelites of the Teiskaya Group, Yenisei Range: Geochemistry, Protoliths, and the Behavior of Their Material during Metamorphism,” Geochem. Int. 46, 17–36 (2008).

    Article  Google Scholar 

  36. E. S. Postel’nikov, “Upper Proterozoic Structure and Formations of the Eastern Slope of the Yenisei Range,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 65(1), 14–31 (1990).

    Google Scholar 

  37. A. D. Nozhkin, O. M. Turkina, and T. B. Bayanova, “Paleoproterozoic Collisional and Intraplate Granitoids of the Southwest Margin of the Siberian Craton: Petrogeochemcial Features and U-Pb Geochronological and Sm-Nd Isotopic Data,” Dokl. Earth Sci. 428, 1192–1197 (2009).

    Article  Google Scholar 

  38. D. L. Whitney and B. W. Evans, “Abbreviations for Names of Rock-Forming Mineral,” Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  39. B. V. Petrov and V. A. Makrygina, Geochemistry of Regional Metamorphism and Ultrametamorphism (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  40. V. A. Makrygina, Geochemistry of Moderate- and Lower-Pressure Regional Metamorphism and Ultrametamorphism (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  41. A. B. Ronov and Z. V. Khlebnikova, “Chemical Composition of the Major Genetic Types of Clays,” Geokhimiya, No. 6, 449–469 (1961).

  42. F. J. Pettijohn, Sedimentary Rocks (Harper and Row, New York, 1977) [in Russian].

    Google Scholar 

  43. V. P. Kovalev, A. D. Nozhkin, A. G. Mironov, and Z. V. Malyasova, “Redistribution and Mobility of Uranium during Metamorphism of Volcanogenic Complexes,” At. Energ. 41(2), 85–91 (1976).

    Article  Google Scholar 

  44. A. S. Mitropol’skii, “Uranium and Thorium in the Processes of the Earth’s Crust Evolution of the Southern Altai-Sayan Folded Area,” in Geology and Raduogeochemistry of Middle Siberia (Nauka, Novosibirsk, 1985), pp. 64–89 [in Russian].

    Google Scholar 

  45. A. G. Mironov and A. D. Nozhkin, Gold and Radioactive Elements in the Riphean Volcanogenic Complexes and Products of their Metamorphism (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  46. L. P. Rikhvanov, Radiogeochemical Systematics of Ore-Magmatic Complexes: An Example of the Altai-Sayan Folded Area (SO RAN, filial “Geo”, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  47. A. V. Maslov, M. T. Krupenin, Yu. L. Ronkin, E. Z. Gareev, O. P. Lepikhina, O. Yu. Popova, ’Fine-Grained Aluminosiliciclastic Rocks of the Middle Riphean Stratotype Section in the Southern Urals: Formation Conditions, Composition and Provenance Evolution,’ Lithol. Miner. Resour. 39, 345–356 (2004).

    Article  Google Scholar 

  48. Neutron Activation and X-Ray Analysis in Geology, Ed. by V. A. Bobrov and A. D. Nozhkin (IGiG SO AN SSSR, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  49. Rare-Earth Elements in the Magmatic Rocks (IGiG SO AN SSSR, Novosibirsk, 1988) [in Russian].

  50. M. M. Herron, “Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data,” J. Sed. Petrol. 58, 820–829 (1988).

    Google Scholar 

  51. A. H. Brownlow, “Geochemistry,” (Prentice Hall, Englewood Cliffs, New York, 1979) [in Russian].

    Google Scholar 

  52. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  53. S. Turgeon and H. -J. Brumsack, “Anoxic vs. Dysoxic Events Reflected in Sediment Geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of Central Italy,” Chem. Geol. 234, 321–339 (2006).

    Article  Google Scholar 

  54. H. W. Nesbitt and G. M. Young, “Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  55. Interpretation of Geochemical Data, Ed. by E.V. Sklyarov (Intermet Inzhiniring, Moscow, 2001) [in Russian].

    Google Scholar 

  56. K. C. Condie, “Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  57. B. D. Roser and R. J. Korsch, “Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data,” Chem. Geol. 67, 119–139 (1988).

    Article  Google Scholar 

  58. B. E. Davis, Applied Soil Trace Elements (Wiley & Sons, New York, 1980).

    Google Scholar 

  59. D. J. Wronkiewicz and K. C. Condie, “Geochemistry and Mineralogy of Sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic Evolution During the Early Proterozoic,” Geochim. Cosmochim. Acta 54, 343–354 (1990).

    Article  Google Scholar 

  60. D. J. Wronkiewicz and K. C. Condie, “Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance,” Geochim. Cosmochim. Acta 51, 2401–2416 (1987).

    Article  Google Scholar 

  61. H. W. Nesbitt, “Mobility and Fractionation of Rare Elements during Weathering of a Granodiorite,” Nature 279, 206–210 (1979).

    Article  Google Scholar 

  62. S. M. McLennan, “Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Ed. by B. R. Lipin and G. A. McKay, Rev. Mineral. 21, 169–200 (1989).

  63. S. M. McLennan, S. R. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical Approaches to Sedimentation, Provenance and Tectonics,” in Processes Controlling the Composition of Clastic Sediments, Ed. by M. J. Johnsson and A. Basu, Geol. Soc. Am. Spec. Pap. 284, 21–40 (1993).

  64. R. L. Cullers and J. Graf, “Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks, Ore Petrogenesis,” in Rare-Earth Geochemistry, Ed. by P. Hendersen (Elsevier, Amsterdam, 1983), pp. 275–312.

    Google Scholar 

  65. S. M. McLennan and S. R. Taylor, “Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends,” J. Geol. 99, 1–21 (1991).

    Article  Google Scholar 

  66. H. Martin, “The Archean Grey Gneisses and the Genesis of Continental Crust,” in Archean Crustal Evolution, (Elsevier, Amsterdam, 1994), pp. 205–259.

    Chapter  Google Scholar 

  67. K. C. Condie and D. A. Wronkiewicz, “The Cr/Th Ratio in Precambrian Pelites from the Kaapvaal Craton as an Index of Craton Evolution,” Earth Planet. Sci. Lett. 97, 256–267 (1990).

    Article  Google Scholar 

  68. B.-M. Jahn and K. C. Condie, “Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites,” Geochim. Cosmochim. Acta 59, 2239–2258 (1995).

    Article  Google Scholar 

  69. R. L. Cullers, “The Control on the Major- and Trace-Element Evolution of Shales, Siltstones and Sandstones of Ordovician to Tertiary Age in the Wet Mountains Region, Colorado, U.S.A,” Chem. Geol. 123, 107–131 (1995).

    Article  Google Scholar 

  70. R. L. Cullers and V. N. Podkovyrov, “Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling,” Precambrian Res. 104, 77–93 (2000).

    Article  Google Scholar 

  71. R. L. Cullers, “Implications of Elemental Concentrations for Provenance, Redox Conditions, and Metamorphic Studies of Shales and Limestones Near Pueblo, CO, USA,” Chem. Geol. 191, 305–327 (2002).

    Article  Google Scholar 

  72. D. M. Dobson, G. R. Dickens, and D. K. Rea, “Terrigenous Sediment on Ceara Rise: A Cenozoic Record of South American Orogeny and Erosion,” Palaeogeography. Palaeoclimatology. Palaeoecology 165, 215–229 (2001).

    Article  Google Scholar 

  73. X. X. Gu, “Geochemical Characteristics of the Triassic Tethys—Turbidites in Northwestern Sichuan, China: Implications for Provenance and Interpretation of the Tectonic Setting,” Geochim. Cosmochim. Acta 58, 4615–4631 (1994).

    Article  Google Scholar 

  74. B. N. Nath, H. Kunzendorf, and W. L. Pluger, “Influence of Provenance, Weathering and Sedimentary Processes on the Elemental Ratios of the Fine-Grained Fraction of the Bedload Sediments from the Vembanad Lake and the Adjoining Continental Shelf, Southwest Coast of India,” J. Sed. Res 70(5), 1081–1094 (2000).

    Article  Google Scholar 

  75. R. L. Rudnik and S. Gao, “Composition of the Continental Crust,” Treatise on Geochemistry 3, 1–64 (2003).

    Article  Google Scholar 

  76. W. V. Boynton, “Cosmochemistry of the Rare Earth Elements: Meteorite Studies,” in Rare Earth Element Geochemistry (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  77. K. C. Condie, Archean Greenstone Belts, (Elsevier, Amsterdam, 1981).

    Google Scholar 

  78. O. M. Rosen, A. A. Shchipansky, and O. M. Turkina, Geodynamics of the Early Earth: Evolution and Stability of Geological Processes (Nauchnyi mir, Moscow, 2008) [in Russian].

    Google Scholar 

  79. A. V. Maslov, Sedimentary Rocks: Methods of Study and Interpretation of Obtained Data (UGGU, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  80. O. M. Rosen, A. A. Abbyasov, N. V. Aksamentova, N. V. Bredanova, V. L. Zlobin, A. A. Migdisov, V. T. Safronov, A. A. Tolkachikova, A. I. Trusov, P. A. Chekhovich, and A. A. Yaroshevskii, Early Precambrian Sedimentation: Types of Sediments, Metamorphosed Sedimentary Basins, and the Evolution of Terrigenous Deposits, (Nauchnyi Mir, Moscow, 2006) [in Russian].

    Google Scholar 

  81. B. D. Roser and R. J. Korsch, “Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio,” J. Geol. 94, 635–650 (1986).

    Article  Google Scholar 

  82. M. R. Bhatia, “Plate Tectonics and Geochemical Compositions of Sandstones,” J. Geol. 91, 611–627 (1983).

    Article  Google Scholar 

  83. M. R. Bhatia and A. W. Crook, “Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins,” Contrib. Mineral. Petrol. 921, 181–193 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Nozhkin.

Additional information

Original Russian Text © A.D. Nozhkin, A.V. Maslov, N.V. Dmitrieva, Yu.L. Ronkin, 2012, published in Geokhimiya, 2012, Vol. 50, No. 7, pp. 644–682.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozhkin, A.D., Maslov, A.V., Dmitrieva, N.V. et al. Pre-Riphean metapelites of the Yenisei Range: Chemical composition, sources of eroded material, and paleogeodynamics. Geochem. Int. 50, 574–610 (2012). https://doi.org/10.1134/S0016702912050047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912050047

Keywords

Navigation