Skip to main content
Log in

Eukaryotization of the early biosphere: A biogeochemical aspect

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The synthesis of data on the paleobiology and geochemistry of the Archean and Proterozoic and the ecology, biochemistry, and comparative genomics of living organisms provides a means for reconstructing the development of biological complexity on the subcell, organism, and ecosystem levels. The conditions and time of the origin of oxygenic photosynthesis, eukaryotic cells, and multicellular animals were determined. These evolutionary events had a profound influence on the global biogeochemical cycles, sedimentogenesis, and climate of the Earth. Irreversible geochemical changes in the biosphere and the biochemical evolution of living systems are described as complementary processes. A decrease in hydrogen concentration in the early biosphere, an increase in oxygen concentration in the ocean, and changes in the bioavailability of metals (Fe, Ni, Co, V, W, Cu, Mo, etc.) known as enzyme activators were considered as key factors of eukaryotization. The reasons for variations in the availability of the metals in the biosphere were distinguished. The continuity of life was maintained owing to the preservation of the functionality of archaic metabolism types through the compartmentalization of biochemical reactions and the complication of cellular metabolic networks. The metabolic cascades of living cells probably recapitulate this prolonged evolutionary process. The exhaustion of abiogenic hydrogen sources stimulated the symbiosis of hydrogen-producing and hydrogen-consuming prokaryotes and the involvement of simple hydrogen-bearing volatile compounds (CH4, NH3, H2S, and, finally, H2O) as a substrate for life, which eventually predefined the chemical composition of the terrestrial atmosphere strongly dominated by nitrogen and oxygen as by-products of exchange reactions. The oxygenation of the ocean diminished the mobility and bioavailability of some metals that had served as the earliest enzyme activators. The evolutionary response to this process was the formation of mechanisms of extraction, accumulation, and the retention of ancient activator metals (e.g., Fe, W, and Ni) in the cell and in the ecosystem, as well as the active involvement of new metals (e.g., Mo, Cu, and Zn). Oceanic biota became the main concentrator and reservoir for these metals. The appearance of eukaryotic cells, the increasing role of heterotrophy, an increase in biodiversity, the complication of trophic relationships, the acceleration of the cycle of biophile elements, and other features of the biosphere eukaryotization were to large extent a response to the narrowing of the geochemical basis of life. A pivotal point in the prolonged process of biosphere eukaryotization was a series of glaciations at the end of the Proterozoic (750–540 Ma) and the active oxygenation of the ocean, which enabled the global expansion of eukaryotic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bergson, L’évolution créatrice (Paris, 1907). English Translation by A. Mitchell, Creative Evolution (The Modern Library, New York, 2007).

  2. C. Mereschkowski, “Über Natur und Ursprung der Chromatophoren im Pflanzenreiche,” Biol. Centralbl., 25, 593–604 (1905).

    Google Scholar 

  3. A. S. Famintsyn, “On the Role of Symbiosis in the Evolution of Organisms,” Tr. St. Petersb. O-va Ispyt. Prir. 38, 141–170 (1907).

    Google Scholar 

  4. C. S. Mereschkowski, Theory of Two Plasmas as a Principle of Symbiogenesis—A New Science of Organism Origin (Kazan, 1909) [in Russian].

  5. L. Margulis, Origins of Eukaryotic Cells (New Haven, Yale University Press, 1970).

    Google Scholar 

  6. L. Margulis, Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons (Freeman and Company, New York, 1993).

    Google Scholar 

  7. L. N. Khakhina, Problem of Symbiogenesis. Historical-Critical Sketches on Studies of Russian Botanists (Nauka, Leningrad, 1979) [in Russian].

    Google Scholar 

  8. I. M. Mirabdullaev, “Problem of the Origin of Eukaryotic Cells”, Usp. Sovrem. Biol. 107(4), 341–356 (1989) [in Russian].

    Google Scholar 

  9. S. V. Shestakov, “On the Early Biological Evolution from the Viewpoint of Genomics,” Paleontol. Zh., No. 6, 50–57 (2003) [Paleontol. J. 37, 609–616 (2003)].

  10. V. V. Malakhov, “Major Stages in the Evolution of Eukaryotic Organisms,” Paleontol. Zh., No. 6, 25–32 (2003) [Paleontol. J. 37, 584–591 (2003)].

  11. A. V. Markov, “On the Origin of the Eukaryotic Cell,” Paleontol. Zh., No. 2, 3–12 (2005) [Paleontol. J. 37, 109–116 (2005)].

  12. M. A. Fedonkin, “Geochemical Impoverishment and Eukaryotization of the Biosphere: A Causal Link,” Paleontol. Zh., No. 6, 33–40 (2003) [Paleontol. J. 37, 592–599].

  13. M. A. Fedonkin, “Change in Metal Availability and the Eukaryotization of the Biosphere in the Precambrian,” in Modern Problems of Geology, Ed. by Yu. O. Gavrilov and M. D. Khutorskoi, Tr. Geol. Inst. Ross. Akad. Nauk 565, 426–447 (2004).

    Google Scholar 

  14. R. Hengeveld and M. A. Fedonkin, “Causes and Consequences of Eukaryotization through Mutualistic Endosymbiosis and Compartmentalization,î Acta Biotheor. 52(2), 105–154 (2004).

    Article  Google Scholar 

  15. A. H. Knoll, Life on a Young Planet: The First Three Billion Years of Evolution on Earth (University Press, Princeton-Oxford, 2003).

    Google Scholar 

  16. A.G. Cairns-Smith, A. J. Hall, and M. J. Russell, “Mineral Theories of the Origin of Life and an Iron-Sulphide Example,” Orig. Life Evol. Biosph. 22, 161–180 (1992).

    Article  Google Scholar 

  17. J. P. Ferris, A. R. Hill, R. H. Liu, et al., “Synthesis of Long Prebiotic Oligomers on Mineral Surfaces,” Nature 381, 59–61 (1996).

    Article  Google Scholar 

  18. I. Prigogine and I. Stengers, Order Out of Chaos: Man’s New Dialogue with Nature (Bantam Books, New York, 1984).

    Google Scholar 

  19. E. M. Galimov, Phenomenon of Life: between Equilibrium and Nonlinearity (Origin and Principles of Evolution) (Editorial URSS, Moscow, 2001) [in Russian].

    Google Scholar 

  20. H. J. Morowitz, Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis (Yale University Press, New Haven, 1992).

    Google Scholar 

  21. R. Hengeveld, “Two Approaches to the Study of the Origin of Life”, Acta Biotheor. 55(2), 97–131 (2007).

    Article  Google Scholar 

  22. N. P. Yushkin, “Biomineral Homologies,” in Syktyvkar Mineral, Tr. Inst. Geol. Komi NK UrO RAN 29, 5–27 (2000).

    Google Scholar 

  23. V. E. Ostrovskii, E. A. Kadyshevich, “Generalized Hypothesis of the Origin of the Living-Matter Simplest Elements, Transformation of the Archean Atmosphere, and the Formation of Methane-Hydrate Deposits,” Physics-Uspekhi, 50(2), 175–196 (2007)

    Article  Google Scholar 

  24. A. Askhabov, “The Quataron Hypothesis of the Origin of Life,” Dokl. Obshch. Biol. 418, 564–566 (2008) [Biol. Sci. 418, 50–52 (2008)].

    Google Scholar 

  25. A. G. Cairns-Smith, Genetic Takeover and the Mineral Origins of Life (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  26. G. Wächtershäuser, “Before Enzymes and Templates: Theory of Surface Metabolism,” Microbiol. Rev., 52, 452–484 (1998).

    Google Scholar 

  27. G. Wächtershäuser, “On the Chemistry and Evolution of the Pioneer Organism,” Chem. Biodiv. 4, 584–602 (2007).

    Article  Google Scholar 

  28. M. J. Russell and A. J. Hall, “The Emergence of Life from Iron Monosulphide Bubbles at a Submarine Hydrothermal Redox and pH Front,” J. Geol. Soc. London 154, 377–402 (1997).

    Article  Google Scholar 

  29. M. J. Russell, “The Alkaline Solution to the Emergence of Life: Energy, Entropy and Early Evolution,” Acta Biotheor. 55(2), 133–79 (2007).

    Article  Google Scholar 

  30. M. Russell, “First Life,” Am. Sci. 94, 32–39 (2006).

    Google Scholar 

  31. M. A. Fedonkin, “The Birth of Life Music: Hard Rock or Heavy Metal?” in Proceedings of 4th International Symposium on Mineralogy and Life: Origination of the Biosphere and the Coevolution of the Mineral and Biological Worlds, Biomineralogy, Syktyvkar, Russia, 2007 (Geoprint, Syktyvkar, 2007), pp. 70–71 [in Russian].

    Google Scholar 

  32. R. Hengeveld and M. A. Fedonkin, “Bootstrapping the Energy Flow in the Beginning of Life,” Acta Biotheor. 55, 181–226 (2007).

    Article  Google Scholar 

  33. P. Forterre, C. Brochier, H. Philippe, “Evolution of the Archaea,” Theor. Pop. Biol. 6, 409—422 (2002).

    Google Scholar 

  34. K. O. Stetter, “Hyperthermophilic Prokaryotes,” FEMS Microbiol. Rev. 18, 149–158 (1996).

    Article  Google Scholar 

  35. C. Brochier, P. Forterre, S. Gribaldo, “An Emerging Phylogenetic Core of Archaea: Phylogenies of Transcription and Translation Machineries Converge Following Addition of New Genome Sequences,” BMC Evol. Biol. 5, 36–42 (2005).

    Article  Google Scholar 

  36. A. I. Oparin, Origin of Life (Moskovskii rabochii, Moscow, 1924) [in Russian].

    Google Scholar 

  37. M. A. Fedonkin, “Role of Hydrogen and Metals in the Origin and Evolution of the Metabolic Systems,” in Problems of the Origination and Evolution of Biosphere, Ed. by E. M. Galimov (Librokom, Moscow, 2008), pp. 417–437 [in Russian].

    Google Scholar 

  38. Living processes. Book 2. Bioenergetics, Ed. by M.-W. Ho (Open University Press, Milton Keynes, 1995).

    Google Scholar 

  39. S. A. L. Kooijman and R. Hengeveld, “The Symbiotic Nature of Metabolic Evolution,” in Current Themes in Theoretical Biology: A Dutch Perspective, Ed. by T. A. C. Reydon and L. Hemerik (Springer, Dordrecht, 2005), pp. 159–202.

    Chapter  Google Scholar 

  40. A. Boetius, “Lost City Life,” Science 307(5714), 1420–1422 (2005).

    Article  Google Scholar 

  41. D. S. Kelley, J. A. Karson, G. L. Früh-Green, et al., “A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field,” Science 307(5714), 1428–1434 (2005).

    Article  Google Scholar 

  42. G. Proskurowski, M. D. Lilley, J. S. Seewald, et al., “Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field,” Science 319, 604–607 (2008).

    Article  Google Scholar 

  43. The Proterozoic Biosphere: a Multidisciplinary Study, Ed. by J. W. Schopf and C. Klein (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  44. E. M. Galimov, Phenomenon of Life: Between Equilibrium and Nonlinearity. Origin and Principles of Evolution (Editorial URSS, Moscow, 2001) [in Russian].

    Google Scholar 

  45. O. G. Sorokhtin and S. A. Ushakov, Earthís Evolution (Mosk. Gos. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  46. A. H. Knoll, Life on a Young Planet: the First Three Billion Years of Evolution on Earth (Princeton University Press, Princeton and Oxford, 2003).

    Google Scholar 

  47. Problems of Origin and Evolution of Biosphere, Ed. by E. M. Galimov (Librocom, Moscow, 2008).

    Google Scholar 

  48. L. P. Wackett, A. G. Dodge, and L. B. M. Ellis, “Microbial Genomics and the Periodic Table,” Appl. Env. Microbiol. 2, 647–655 (2004).

    Article  Google Scholar 

  49. A. C. Williams and D. B. Ramsden, “Hydrogen Symbioses in Evolution and Disease,” Q. J. Med. 100, 451–459 (2007). doi:10.1093/qjmed/hcm045.

    Google Scholar 

  50. C. R. Woese, “Bacterial Evolution,” Microbiol. Rev. 51, 221–271 (1987).

    Google Scholar 

  51. K. O. Stetter, “Hyperthermophiles in the History of Life”, in Ciba Foundation Symposium (John Wiley and Sons, New York, 1996), Vol. 202, pp. 1–18.

    Google Scholar 

  52. T. Fenchel, G. M. King, and T. H. Blackburn, Bacterial Biogeochemistry (Academic Press, London, 1998).

    Google Scholar 

  53. W. Martin and M. Müller, “The Hydrogen Hypothesis for the First Eukaryote,” Nature 392, 37–41 (1998).

    Article  Google Scholar 

  54. T. M. Hoehler, “Biological Energy Eequirements as Quantitative Boundary Conditions for Life in the Subsurface,” Geobiology 2, 205–215 (2004).

    Article  Google Scholar 

  55. T. M. Hoehler, “Biogeochemistry of Dihydrogen (H2)”, Metal Ions Biol. Syst. 43, 9–48 (2005).

    Article  Google Scholar 

  56. M. A. Fedonkin, “Early Eukaryotization of Life: Environmental Driving Forces of Evolution,” in Proceedings of International Symposium The Origin and Evolution of Natural Diversity, Sapporo, 2007, Ed. by H. Okada, S. F. Mawatari, N. Suzuki, and P. Gautam (Sapporo, 2007), pp. 3–12.

  57. N. Lane, “The Last Ancestor of All Microbes Must Have Been an Electrochemist,” Nature 441, 274–276 (2006).

    Article  Google Scholar 

  58. W. Martin and M. J. Russell, “On the Origins of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells,” Phil. Trans. R. Soc. London 358, 59–85 (2003).

    Article  Google Scholar 

  59. J. T. Staley, “The Metabolism of Earth’s First Organisms,” Mol. Biol. Evol. 23, 1286–1292 (2006).

    Article  Google Scholar 

  60. M. Javoy, “The Integral Enstatite Chondrite Model of the Earth,” Geophys. Res. Lett. 22, 2219–2222 (1995).

    Article  Google Scholar 

  61. L. Schaefer and B. Jr. Fegley, “Outgassing of Ordinary Chondritic Material and Some of Its Implications for the Chemistry of Asteroids, Planets, and Satellites,” Icarus (2006), doi:10.1016/j.icarus.2006.09.002

  62. A. A. Kadik and Yu. A. Litvin, “Magmatic Transport of Carbon, Hydrogen and Nitrogen Constituents from Reduced Planetary Interiors,” Lunar Planet. Sci. 38, 1020 (2007). (http://www.lpi.usra.edu/meetings/lpsc2007pdf/1020.pdf).

    Google Scholar 

  63. E. M. Galimov, “Redox Evolution of the Earth Caused by a Multi-Stage Formation of its Core,” Earth Planet. Sci. Lett. 233, 263–276 (2005).

    Article  Google Scholar 

  64. F. Tian, O. B. Toon, A. A. Pavlov, and H. De Sterck, “A Hydrogen-Rich Early Earth Atmosphere,” Science 308, 1014–1017 (2005).

    Article  Google Scholar 

  65. V. N. Larin, Hydridic Earth: The New Geology of Our Primordially Hydrogen-Rich Planet, Ed. by C. W. Hunt (Polar Publishing, Calgary, Alberta, 1993).

    Google Scholar 

  66. V. N. Larin, Our Earth (Origin, Composition, Structure, and Evolution of a Primordially Hydride Earth (Agar, Moscow, 2005) [in Russian].

    Google Scholar 

  67. A. A. Geodekyan, V. I. Avilov, A. M. Bol’shakov, V. K. Svinarenko, “Gases in Bottom Waters of the Red Sea,” Oceanology, No. 24, 624–627 (1984).

  68. J. A. Apps and P. C. van de Kamp, “Energy Gases of Abiogenic Origin in the Earth’s Crust,” in The Future of Energy Gases, U. S. Geol. Prof. Pap., No. 1570, 81–132 (1993).

  69. R. Y. Morita, “Is H2 the Universal Energy Source for Long-Term Survival?” Microbial Ecol. 38, 307–320 (2000).

    Article  Google Scholar 

  70. F. Freund, J. T. Dickinson, and M. Cash, “Hydrogen in Rocks: An Energy Source for Deep Microbial Communities,” Astrobiology 2(1), 83–92 (2002).

    Article  Google Scholar 

  71. J. D. Fast, Interactions of Metals and Gases. Vol. 2. Kinetics and Mechanisms (Philips Technical Library, Macmillan, 1975).

    Google Scholar 

  72. A. A. Kadik, “Degassing of the Earth’s Mantle during Melting and Formation of Metallic Core of the Planet: Results of Experimental Modeling,” in The Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (Librokom, Moscow, 2008) [in Russian].

    Google Scholar 

  73. M. Schulte, D. Blake, T. Hoehler, and T. McCollom, “Serpentinization and Its Implications for Life on the Early Earth and Mars,” Astrobiology 6, 364–376 (2006).

    Article  Google Scholar 

  74. N. H. Sleep, A. Meibom, Th. Fridriksson, R. G. Coleman, and D. K. Bird, “H2-Rich Fluids from Serpentinization: Geochemical and Biotic Implications,” Proc. Nat. Acad. Sci. USA 101(35), 12818–12823 (2004).

    Article  Google Scholar 

  75. J. R. Spear, J. J. Walker, and N. R. Pace, “Hydrogen and Primary Productivity: Inference of Biogeochemistry from Phylogeny in a Geothermal Ecosystem,” in Geothermal Biology and Geochemistry in Yellowstone National Park (Thermal Biology Institute, Montana State University, 2005), pp. 113–128.

  76. U. Ermler, W. Grabarse, S. Shima, et al., “Active Sites of Transition Metal Enzymes with a Focus on Nickel,” Curr. Opin. Struct. Biol. 8, 749–758 (1998).

    Article  Google Scholar 

  77. The Prosthetic Groups and Metal Ions in Protein Active Sites Database Version 2.0 (PROMISE) http://metallo. scripps.edu / PROMISE / MAIN.html

  78. P. M. Vignais, B. Billoud, and J. Meyer, “Classification and Phylogeny of Hydrogenases,” FEMS Microbiol. Rev. 25, 455–501 (2001).

    Google Scholar 

  79. F. B. Straub Biochemistry (Acad. Sci. Hungary, Budapest, 1965) [in Russian].

    Google Scholar 

  80. S. W. Ragsdale and M. Kumar, “Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase,” Chem. Rev. 96, 2515–2539 (1996).

    Article  Google Scholar 

  81. A. P. Vinogradov, “Average Content of Chemical Elements in the Main Types of the Earthís Igneous Rocks,” Geokhimiya, No. 7, 555–571 (1962).

  82. A. P. Lisitsyn, “Main Concepts in the Biogeochemistry of the Ocean,” in Biogeochemistry of the Ocean, Ed. by A. S. Monin and A. P. Lisitsyn (Nauka, Moscow, 1983), pp. 9–32 [in Russian].

    Google Scholar 

  83. N. P. Morozov, “Chemical Elements and Hydrobionts in Food Chains,” in Biogeochemistry of the Ocean, Ed. by A. S. Monin and A. P. Lisitsyn (Nauka, Moscow, 1983), pp. 127–165 [in Russian].

    Google Scholar 

  84. D. M. Di Toro, C. D. Kavvadas, R. Mathew, et al., The Persistence and Availability of Metals in Aquatic Environments (International Council on Metals and the Environment, Ottawa, 2001).

    Google Scholar 

  85. A. P. Vinogradov, Chemical Elementary Composition of Marine Organisms, Tr. Biogeokhim. Lab. Akad. Nauk SSSR 4(1937), 6 (1944).

    Google Scholar 

  86. D. G. Zavarzina, “The Role of Dissimilatory Fe(III)-Reducing Bacteria in Transformation of Iron Minerals,” Paleontol. Zh., No. 3, 3–10 (2004) [Paleontol. J. 38, 231–237 (2004)]

  87. J. P. Cowen, G. J. Massoth, and E. T. Baker, “Bacterial Scavenging of Mn and Fe in a Mid- to Far-Field Hydrothermal Particle Plume,” Nature 322, 169–171 (1986).

    Article  Google Scholar 

  88. C. R. Myers and K. H. Nealson, “Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor,” Science 240, 1319–1321 (1988).

    Article  Google Scholar 

  89. T. Fenchel, The Origin and Early Evolution of Life (Oxford University Press, Oxford, 2002).

    Google Scholar 

  90. U. Ermler, W. Grabarse, S. Shima, et al., “Active Sites of Transition Metal Enzymes with a Focus on Nickel,” Curr. Opin. Struct. Biol. 8, 749–758 (1998).

    Article  Google Scholar 

  91. T. A. Rouault and R. D. Klausner, “Iron-Sulfur Clusters as Biosensors of Oxidants and Iron,” TiBS 21, 174–177 (1996).

    Google Scholar 

  92. A. J. Imlay, “Iron-Sulphur Clusters and the Problem with Oxygen,” Mol. Microbiol. 59(4), 1073–1082 (2006).

    Article  Google Scholar 

  93. M. Zheng and G. Storz, “Redox Sensing by Prokaryotic Transcription Factors,” Biochem. Pharmacol. 59, 1–6 (2000).

    Article  Google Scholar 

  94. M. J. Russell and A. J. Hall, “From Geochemistry to Biochemistry: Chemiosmotic Coupling and Transition Element Clusters in the Onset of Life and Photosynthesis,” Geochem. News 113, 6–12 (2002).

    Google Scholar 

  95. J. J. R. Fraústo da Silva and R. J. P. Williams, The Biological Chemistry of the Elements: The Inorganic Chemistry of Life (Clarendon Press, Oxford, 1997).

    Google Scholar 

  96. H. Dobbeck, V. Svetlitchnyi, L. Gremer, et al., “Crystal Structure of a Carbon Monoxide Dehydrogenase Reveals a [Ni-4Fe-5S] Cluster,” Science 293, 1281–1285 (2001).

    Article  Google Scholar 

  97. M. Fontecave, “Iron-Sulfur Clusters: Ever-Expanding Roles,” Nature Chem. Biol. 2(4), 171–174 (2006).

    Article  Google Scholar 

  98. R. J. P. Williams and J. J. R. Frausto da Silva, The Chemistry of Evolution. The Development of Our Ecosystem (Elsevier, Amsterdam, 2006).

    Google Scholar 

  99. A. Kletzin and M. W. Adams, “Tungsten in Biological Systems,” FEMS Microbiol. Rev. 18(1), 5–63 (1996).

    Article  Google Scholar 

  100. E. I. Stiefel, “Transition Metal Sulfur Chemistry and Its Relevance to Molybdenum and Tungsten Enzymes,” Pure Appl. Chem. 70(4), 889–896 (1998).

    Article  Google Scholar 

  101. N. P. Li’vov, A. N. Nosikov, and A. N. Antipov, “Tungsten-Containing Enzymes,” Biokhimiya 67(2), 234–239 (2002) [Biochemistry 67 (2), 196–200 (2002)].

    Google Scholar 

  102. P.-L. Hagedoorn, Metalloproteins Containing Iron and Tungsten: Biocatalytic Links between Organic and Inorganic Redox Chemistry (Delft Univ. Press, Delft, 2002).

    Google Scholar 

  103. R. Hille, “Molybdenum Enzymes,” Essays Biochem. 34, 125–37 (1999).

    Google Scholar 

  104. R. Hille, “Molybdenum and Tungsten in Biology [Review],” Tr. Biochem. Sci. 27(7), 360–367 (2002).

    Article  Google Scholar 

  105. R. J. P. Williams and J. J. R. Fraústo da Silva, “The Involvement of Molybdenum in Life,” Biochem. Biophys. Res. Comm. 292(2), 293–299 (2002).

    Article  Google Scholar 

  106. R. Hille, “The Mononuclear Molybdenum Enzymes,” Chem. Rev. 96(7), 2757–2816 (1996).

    Article  Google Scholar 

  107. R. R. Mendel and F. Bittner, “Cell Biology of Molybdenum,” Biochim. Biophys. Acta, 1763(7), 621–635 (2006).

    Article  Google Scholar 

  108. G. Schwarz and R. R. Mendel, “Molybdenum Cofactor Biosynthesis and Molybdenum Enzymes,” Annu. Rev. Plant Biol. 57, 623–47 (2006).

    Article  Google Scholar 

  109. R. R. Mendel, “Biology of the Molybdenum Cofactor”, J. Exp. Bot. 58(9), 2289–2296 (2007).

    Article  Google Scholar 

  110. P. Hofmann, http://hofmann.uni-hd.de

  111. W. N. Hunter, “Biological Chemistry: The Making of Moco,” Nature 430, 736–737 (2004).

    Article  Google Scholar 

  112. D. Rehder, Bioinorganic Vanadium Chemistry, Inorganic Chemistry: A Textbook Series (John Wiley and Sons, Chichester, 2008).

    Book  Google Scholar 

  113. V. V. Kovalsky and L. T. Rezaeva, “Biological Role of Vanadium in Ascidians,” Usp. Sovrem. Biol. 1(4)(60), 45–61 (1965).

    Google Scholar 

  114. D. Rehder, “The Bioinorganic Chemistry of Vanadium,” Angew. Chem. 30, 148–167 (1991).

    Article  Google Scholar 

  115. D. Rehder, “Structure and Function of Vanadium Compounds in Living Organisms,” BioMetals 5, 3–12 (1992).

    Article  Google Scholar 

  116. R. Wever, P. Barnett, L. H. Simons, et al., “Vanadium Peroxidases: Structure and Function,” J. Inorg. Biochem. 59(2–3), 584–593 (1995).

    Article  Google Scholar 

  117. J. Kongkiattikajorn and S. Pongdam, “Vanadium Haloperoxidase from the Red Alga Gracilaria Fisheri,” Science Asia 32(1), 25–30 (2006).

    Article  Google Scholar 

  118. R. P. Hausinger, Biochemistry of Nickel (Plenum, New York, 1993).

    Google Scholar 

  119. J. Telser, “Nickel in F430,” in Bioinorganic Chemistry: Trace Element Evolution from Anaerobes to Aerobes, Ed. by R. J. P. Williams, Struct. Bond. 91, 31–64 (1998).

  120. J. C. Fontecilla-Camps, “Biological Nickel,” in Bioinorganic Chemistry: Trace Element Evolution from Anaerobes to Eerobes, Ed. by R. J. P. Williams, Struct. Bond. 91, 1–30 (1998).

  121. S. W. Ragsdale and M. Kumar, “Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase,” Chem. Rev. 96, 2515–2539 (1996).

    Article  Google Scholar 

  122. R. Cammack, “Nickel in Metalloproteins,” Adv. Org. Chem. 32, 297–333 (1988).

    Google Scholar 

  123. S. W. Ragsdale, “Nickel biochemistry,” Curr. Opin. Chem. Biol. 2(2), 208–215 (1998).

    Article  Google Scholar 

  124. U. Ermler, W. Grabarse, S. Shima, et al., “Active Sites of Transition Metal Enzymes with a Focus on Nickel,” Curr. Opin. Struct. Biol. 8, 749–758 (1998).

    Article  Google Scholar 

  125. S. B. Mulrooney and R. P. Hausinger, “Nickel Uptake and Utilization by Microorganisms,” FEMS Microbiol. Rev. 27, 239–261 (2003).

    Article  Google Scholar 

  126. C. R. Myers and K. H. Nealson, “Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor,” Science 240, 1319–1321 (1988).

    Article  Google Scholar 

  127. P. G. Ridge, Y. Zhang, and V. N. Gladyshev, “Comparative Genomic Analyses of Copper Transporters and Cuproproteomes Reveal Evolutionary Dynamics of Copper Utilization and Its Link to Oxygen,” PLoS ONE, No. 3(1), 1378 (2008). doi:10.1371 / journal. pone.0001378

  128. J. Xiong, W. M. Fischer, K. Inoue, M. Nakahara, and C.E. Bauer, “Molecular Evidence for the Early Evolution of Photosynthesis,” Science 289, 1724–1730 (2000).

    Article  Google Scholar 

  129. C. Andreini, I. Bertini, G. Cavallaro, et al., “Metal Ions in Biological Catalysis: From Enzyme Databases to General Principles,” J. Biol. Inorg. Chem. 13(8), 1205–1218 (2008).

    Article  Google Scholar 

  130. K. O. Stetter, “The Lesson of Archaeobacteria,” in Early Life on Earth. Nobel Symposium No. 84, Ed. by S. Bengtson (Columbia University Press, New York, 1994), pp. 143–151.

    Google Scholar 

  131. M. A. Saito, D. M. Sigman, and F. M. M. Morel, “The Bioinorganic Chemistry of the Ancient Ocean: The Co-Evolution of Cyanobacterial Metal Requirements and Biogeochemical Cycles at the Archean-/Proterozoic boundary?” Inorg. Chim. Acta 356, 308–318 (2003).

    Article  Google Scholar 

  132. K. N. Raymond, E. A. Dertz, and S. S. Kim, “Enterobactin: An Archetype for Microbial Iron Transport,” Proc. Nat. Acad. Sci. USA 100(7), 3584–3588 (2003).

    Article  Google Scholar 

  133. R. J. P. Williams and J. J. R. Frausto da Silva, The Natural Selection of the Chemical Elements: The Environment and Life’s Chemistry (Clarendon Press, Oxford, 1996).

    Google Scholar 

  134. E. Galimov, “Growth of the Earthís Core as a Source of Its Internal Energy and a Factor of Mantle Redox Evolution,” Geokhimiya, No. 8, 755–758 (1998) [Geochem. Int. 36, 673–675 (1998)].

  135. Q. Yin, S. B. Jacobsen, K. Yamashita et al, “A Short Timescale for Terrestrial Planet Formation from Hf-W Chronometry of Meteorites,” Nature 418, 949–952. (2002).

    Article  Google Scholar 

  136. T. Kleine, C. Munker, K. Mezger, and H. Palme, “Rapid Accretion and Early Core Formation on Asteroids and the Terrestrial Planets from Hf-W Chronometry,” Nature 418, 952–955 (2002).

    Article  Google Scholar 

  137. N. L. Dobretsov and V. I. Kovalenko, “Global Environmental Changes,” Geol. Geofiz. 36(8), 7–30 (1995).

    Google Scholar 

  138. O. G. Sorokhtin and S. A. Ushakov, Evolution of the Earth (Mosk. Gos. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  139. G. E. Williams, “Geological Constraints on the Precambrian History of Earth’s Rotation and the Moon’s Orbit,” Rev. Geophys. 38(1), 37–59 (2000).

    Article  Google Scholar 

  140. O. A. Bogatikov, V. I. Kovalenko, E. V. Sharkov, et al., Magmatism and Geodynamics. Terrestrial Magmatism throughout the Earth’s History (Gordon and Breech, London, 2000).

    Google Scholar 

  141. M. A. Semikhatov, A. B. Kuznetsov, I. M. Gorokhov, et al., “Low 87Sr/86Sr Ratios in Seawater of the Grenville and post-Grenville Time: Determining Factors,î Stratigr. Geol. Korrelyatsiya 10(1), 3–46 (2002) [Stratigr. Geol. Correlation 10, 1–41 (2002)]

    Google Scholar 

  142. T. I. Frolova, “Volcanism and Its Role in the Evolution of Our Planet,” Soros. Obr. Zh., No. 2, 74–81 (1996).

  143. A. V. Samsonov and Yu. O. Larionova, “Geochemical Evolution of Magmatism in Archean Granite-Greenstone Terrains,” Stratigr. Geol. Korrelyatsiya 14(3), 3–18 (2006) [Stratigr. Geol. Correlation 14, 225–239 (2006)].

    Google Scholar 

  144. E. V. Sharkov and M. M. Bogina, “Evolution of Paleoproterozoic Magmatism: Geology, Geochemistry, and Isotopic Constraints,” Stratigr. Geol. Korrelyatsiya 14(4), 3–27 (2006) [Stratigr. Geol. Correlation 14, 354–367 (2006)].

    Google Scholar 

  145. C. Sagan and C. Chyba, “The Early Faint Sun Paradox: Organic Shielding of Ultraviolet-Labile Greenhouse Gases,” Science 276, 1217–1221 (1997).

    Article  Google Scholar 

  146. A. A. Pavlov, J. F. Kasting, L. L. Brown, et al., “Greenhouse Warming by CH4 in the Atmosphere of Early Earth,” J. Geophys. Res. 105, 11981–11990 (2000).

    Article  Google Scholar 

  147. O. K. Leont’ev, Physical Geography of the World Ocean (Mosk. Gos. Univ., Moscow, 1982) [in Russian].

    Google Scholar 

  148. D. R. Lowe, “Early Environments: Constraints and Opportunities for Early Evolution,” in Early Life on Earth. Nobel Symposium No. 84, Ed. by S. Bengtson (Columbia Univ. Press, New York, 1994), pp. 25–35.

    Google Scholar 

  149. S. A. Wilde, J. W. Valley, W. H. Peck, and C. M. Graham, “Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr Ago,” Nature 409, 175–178 (2001).

    Article  Google Scholar 

  150. I. B. Lambert, N. J. Beukes, C. Klein, and J. Veizer, “Proterozoic Mineral Deposits through Time,” in The Proterozoic Biosphere. A Multidisciplinary Study, Ed. by J. W. Schopf and C. Klein (Cambridge Univ. Press, Cambridge, 1992), pp. 59–62.

    Google Scholar 

  151. P. Westbroek, Life as a Geological Force: Dynamics of the Earth (W.W. Norton and Company, London, 1991).

    Google Scholar 

  152. R. G. Maliva, A. H. Knoll, and B. M. Simonson, “Secular Change in the Precambrian Silica Cycle: Insights from Chert Petrology,” Geol. Soc. Am. Bull. 117(7/8), 835–845 (2005).

    Article  Google Scholar 

  153. R. M. Hazen, D. Papineau, W. Bleeker, et al., “Mineral Evolution,” Am. Mineral. 93, 1693–1720 (2008).

    Article  Google Scholar 

  154. M. A. Fedonkin, “Geobiological Trends and Events in the Precambrian Biosphere,” in Global Events and Event Stratigraphy in the Phanerozoic: Results of the International Interdisciplinary Cooperation in the IGCP-Project 216 “Global Biological Events in Earth History”, Ed. by O. H Walliser (Springer, Berlin-Heidelberg, 1996), pp. 89–112.

    Google Scholar 

  155. A. D. Anbar and A. H. Knoll, “Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?” Science 297, 1137–1142 (2002).

    Article  Google Scholar 

  156. N. M. Chumakov, “General Trend of Climatic Changes on the Earth during the Last 3 Ga,” Dokl. Akad. Nauk 381(5), 652–655 (2001) [Dokl. Earth Sci. 381, 1034–1037 (2001)].

    Google Scholar 

  157. D. Schwartzman, Life, Temperature, and the Earth: The Self-Organizing Biosphere (Columbia Univ. Press, New York, 1999).

    Google Scholar 

  158. L. J. Rothschild and R. L. Mancinelli, “Life in Extreme Environment,” Nature 409, 1092–1101 (2001).

    Article  Google Scholar 

  159. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  160. M. D. Brasier and J. F. Lindsay, “A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia,” Geology 26, 555–559 (1998).

    Article  Google Scholar 

  161. K. Pederson, “The Deep Subsurface Biosphere,” Earth Sci. Rev. 34, 243–260 (1993).

    Article  Google Scholar 

  162. R. J. Parkes, B. A. Cragg, S. J. Bale, et al., “Deep Bacterial Biosphere in Pacific Ocean Sediments,” Nature 371, 410–413 (1994).

    Article  Google Scholar 

  163. M. Summit and J. A. Baross, “A Novel Microbial Habitiat in the Mid-Ocean Ridge Subseafloor,” Proc. Nat. Acad. Sci. USA 98, 2158–2163 (2001).

    Article  Google Scholar 

  164. K. O. Konhauser, E. Pecoits, S. V. Lalonde, et al., “Oceanic Nickel Depletion and a Methanogen Famine before the Great Oxidation Event,” Nature 458, 750–754 (2009).

    Article  Google Scholar 

  165. E. S. Egleston and F. M. M. Morel, “Nickel Limitation and Zinc Toxicity in a Urea-Grown Diatom,” Limnol. Oceanogr. 53(6), 2462–2471 (2008).

    Google Scholar 

  166. E. Nisbet, “The Realm of Archaean Life,” Nature 405, 625–626 (2000).

    Article  Google Scholar 

  167. E. Ravasz, A. L. Somera, D. A. Mongru, et al., “Hierarchical Organization of Modularity in Metabolic Networks,” Science 297, 1551–1555 (2002).

    Article  Google Scholar 

  168. C. Cunchillos and G. Lecointre, “Integrating the Universal Metabolism into a Phylogenetic Analysis,” Mol. Biol. Evol. 22(1), 1–11 (2005).

    Article  Google Scholar 

  169. P. M. Wiggins, “Role of Water in Some Biological Processes,” Microbiol. Rev. 54(4), 432–449 (1990).

    Google Scholar 

  170. B. Marty and R. Yokochi, “Water in the Early Earth,” Rev. Mineral. Geochem. 62(1), 421–450 (2006).

    Article  Google Scholar 

  171. J. W. Schopf, Cradle of Life: The Discovery of Earth’s Earliest Fossils (Univ. Press, Princeton, 1999).

    Google Scholar 

  172. T. M. Harrison, J. Blichert-Toft, W. Müller, et al., “Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga,” Science 310, 1947–1950 (2005).

    Article  Google Scholar 

  173. S. J. Mojzsis, T. M. Harrison, and R. T. Pidgeon, “Oxygen-Isotope Evidence from Ancient Zircons for Liquid Water at the Earth’s Surface 4300 Myr Ago,” Nature 409, 178–181 (2001).

    Article  Google Scholar 

  174. D. Trail, S. J. Mojzsis, T. M. Harrison, et al., “Constraints on Hadean Zircon Protoliths from Oxygen Isotopes, Ti-Thermometry, and Rare Earth Elements,” Geochem. Geophys. Geosyst. 8, Q06014 doi:10.10.29/2006GC001449(2007).

    Article  Google Scholar 

  175. N. L. Cates and S. J. Mojzsis, “Pre-3750 Ma Supracrustal Rocks from the Nuvvuagittuq Supracrustal Belt, Northern Quebec,” Earth Planet. Sci. Lett. 255, 9–21 (2007). doi:10.1016/j.epsl.2006.11.034 (2007).

    Article  Google Scholar 

  176. K. D. McKeegan, A. B. Kudryavtsev, and J. W. Schopf, “Raman and Ion Microscopic Imagery of Graphitic Inclusions in Apatite from Older than 3830 Ma Akilia Supracrustal Rocks, West Greenland,” Geology 35, 591–594 (2007).

    Article  Google Scholar 

  177. A. P. Vinogradov, Introduction into the Geochemistry of the Ocean (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  178. L. A. Frank, The Big Splash (Birch Lane Press, New York, 1990).

    Google Scholar 

  179. M. Ya. Marov, “Nature of Small Bodies in the Solar System,” Zemlya Vsel., No. 6, 3–16 (2008).

  180. S. J. Mojzsis, G. Arrhenius, K. D. McKeegan, et al., “Evidence for Life on Earth before 3,800 Million Years Ago,” Nature 384, 55–59 (1996).

    Article  Google Scholar 

  181. C. M. Fedo and M. J. Whitehouse, “Metasomatic Origin of Quartz-Pyroxene Rock, Akilia, Greenland, and Implications for Earth’s Earliest Life,” Science 296, 1448–1452 (2002).

    Article  Google Scholar 

  182. M. A. Van Zuilen, A. Lepland, and G. Arrhenius, “Reassessing the Evidence for the Earliest Traces of Life,” Nature 418, 627–630 (2002).

    Article  Google Scholar 

  183. E. M. Galimov, “Isotopic Criteria for Identification of Organic Carbon on Earth and Meteorites,” Sp. Sci. Rev. 106, 249–262 (2003).

    Article  Google Scholar 

  184. A. P. Nutman, S. J. Mojzsis, and C. R Friend, “Recognition of ∼3850 Ma Water-Lain Sediments in West Greenland and Their Significance for the Early Archaean Earth,” Geochim. Cosmochim. Acta 61, 2475–2484 (1997).

    Article  Google Scholar 

  185. P. S. Braterman, A. G. Cairns-Smith, and R. A. Sloper, “Photo-Oxidation of Hydrated Fe2+—Significance for Banded Iron Formations,” Nature 303, 163–164 (1983).

    Article  Google Scholar 

  186. L. M. François, “Extensive Deposition of Banded Iron Formation Was Possible without Photosynthesis,” Nature 320, 352–354 (1986).

    Article  Google Scholar 

  187. F. Widdel, S. Schnell, S. Heising, et al., “Ferrous Iron Oxidation by Anoxygenic Phototrophic Bacteria,” Nature 362, 834–836 (1993).

    Article  Google Scholar 

  188. M. T. Rosing, “C-13-Depleted Carbon Microparticles in >3700-Ma Sea-Floor Sedimentary Rocks from West Greenland,” Science 283, 674–676 (1999).

    Article  Google Scholar 

  189. I. S. Myers, “Isua Enigmas: Illusive Tectonic, Sedimentary, Volcanic and Organic Features of the >3.7 Ga Isua Greenstone Belt, Southwest Greenland,” in The Precambrian Earth: Tempos and Events Dev. Precambrian Geol. 12, 66–74 (2004).

    Google Scholar 

  190. J. M. Hayes, “Global Methanotrophy at the Archean-Proterozoic Transition,” in Early Life on Earth. Nobel Symposium No. 84, Ed. by S. Bengtson (Columbia Univ. Press, New York, 1994), pp. 220–236.

    Google Scholar 

  191. D. J. Des Marais, “Isotopic Evolution of the Biogeochemical Carbon Cycle during the Proterozoic Eon,” Org. Geochem. 27, 185–193 (1997).

    Article  Google Scholar 

  192. Y. Watanabe, J. E. J. Martini, and H. Ohmoto, “Geochemical Evidence for Terrestrial Ecosystems 2.6 billion years ago,” Nature 408, 576–578 (2000).

    Article  Google Scholar 

  193. J. J. Brocks, G. A. Logan, R. Buick, and R. E. Summons, “Archean Molecular Fossils and the Early Rise of Eukaryotes,” Science 285, 1033–1036 (1999).

    Article  Google Scholar 

  194. J. J. Brocks, R. Buick, G. A. Logan, and R. E. Summons, “Composition and Syngeneity of Molecular Fossils from the 2.78 to 2.45 Billion-Year-Old Mount Bruce Supergroup, Pilbara Craton, Western Australia,” Geochim. Cosmochim. Acta 67(22), 4289–4319 (2003).

    Article  Google Scholar 

  195. J. J. Brocks, R. Buick, G. A. Logan, and R. E. Summons, “A Reconstruction of Archaean Biological Diversity Based on Molecular Fossils from the 2.78 to 2.45 Billion-Year-Old Mount Bruce Supergroup, Hamersley Basin, Western Australia,” Geochim. Cosmochim. Acta 67(22), 4321–4335 (2003).

    Article  Google Scholar 

  196. H. D. Holland, “Early Proterozoic Atmospheric Change,” in Early Life on Earth. Nobel Symposium No. 84, Ed. by S. Bengtson (Columbia Univ. Press, New York, 1994), pp. 237–244.

    Google Scholar 

  197. A. A. Pavlov and J. F. Kasting, “Mass-Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere,” Astrobiology 2, 27–41 (2002).

    Article  Google Scholar 

  198. A. C. Lasaga and H. Ohmoto, “The oxygen geochemical cycle: dynamics and stability,” Geochim. Cosmochim. Acta 66, 361–381 (2002).

    Article  Google Scholar 

  199. H. Ohmoto, “The Archaean Atmosphere, Hydrosphere and Biosphere”, in The Precambrian Earth: Tempos and Events, Ed. by P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Müeller, and O. Catuneanu (Elsevier, Amsterdam, 2004). Dev. Precambrian Geol. 12, 361–388 (2004).

    Google Scholar 

  200. J. Farquhar, H. Bao, and M. Thiemens, “Atmospheric Influence of Earth’s Earliest Sulfur Cycle,” Science 289, 756–758 (2000).

    Article  Google Scholar 

  201. R. E. Kopp, J. L. Kirschvink, I. A. Hilburn, and C. Z Nash, “The Paleoproterozoic Snowball Earth: A Climate Disaster by the Evolution of Oxygenic Photosynthesis,” Proc. Nat. Acad. Sci. USA 102(32), 11131–11136 (2005).

    Article  Google Scholar 

  202. M. A. Semikhatov, M. E. Raaben, V. N. Sergeev, et al., “Biotic Events and Positive δCcarb Anomaly at 2.3–2.06 Ga,” Stratigr. Geol. Korrelyatsiya 7(5), 3–27 (1999) [Stratigr. Geol. Correlation 7, 413–436 (1999)].

    Google Scholar 

  203. Earth’s Earliest Biosphere, Its Origin and Evolution, Ed. by J. W. Schopf (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  204. V. N. Sergeev, M. A. Semikhatov, M. A. Fedonkin, and A. F. Veis, “Principal Stages in Evolution of Precambrian Organic World: Communication 1. Archean and Early Proterozoic,” Stratigr. Geol. Korrelyatsiya 15(2), 25–46 (2007) [Stratigr. Geol. Correlation 15, 141–160 (2007)].

    Google Scholar 

  205. H. J. Hofmann, “Archean Stromatolites as Microbial Archives,” in Microbial Sediments, Ed. by R. E. Riding and S. M. Awramik (Springer, Berlin-Heidelberg, 2000), pp. 315–327.

    Google Scholar 

  206. J. W. Schopf, A. B. Kudryavtsev, D. G. Agresti, et al., “Laser-Raman Imagery of Earth’s Earliest Fossils,” Nature 416, 73–76 (2002).

    Article  Google Scholar 

  207. W. Altermann and J. W. Schopf, “Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and Their Paleoenvironmental and Evolutionary Implications,” Precambrian Res. 75, 65–90 (1995).

    Article  Google Scholar 

  208. V. M. Gorlenko, “Anoxygenic Phototrophic Bacteria as Biogeochemical Agents in the Biosphere,” in Proceedings of International Workshop on the Origin and Evolution of the Biosphere, Novosibirsk, Russia, 2005 (Novosibirsk, 2005), pp. 91–92 [in Russian].

  209. M. M. Tice and D. R. Lowe, “Photosynthetic Microbial Mats in the 3.416-Myr-Old Ocean,” Nature 431, 549–552 (2004)

    Article  Google Scholar 

  210. N. T. Arndt, D. R. Nelson, W. Compston, et al., “The Age of the Fortescue Group, Hamersley Basin, Western Australia, from Ion Microprobe Zircon U-Pb Results,” Austral. J. Earth Sci. 38(3), 261–281 (1991).

    Article  Google Scholar 

  211. D. R. Nelson, A. F. Frendall, W. Alterman, “Geochronological Correlations between the Pilbara and Kaapvaal Cratons,” Precambrian Res. 97(2), 165–189 (1999).

    Article  Google Scholar 

  212. R. E. Summons, L. L. Jahnke, J. M. Hope, and G. A. Logan, “2-Methylhopanoids as Biomarkers for Cyanobacterial Oxygenic Photosynthesis,” Nature 400, 554–557 (1999).

    Article  Google Scholar 

  213. C. R. Woese, O. Kandler, M. L. Wheelis, “Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eukarya,” Proc. Nat. Acad. Sci. USA 87, 4576–4579 (1990).

    Article  Google Scholar 

  214. S. E. Rashby, A. L. Sessions, R. E. Summons, and D. K. Newman, “Biosynthesis of 2-Methylbacteriohopanepolyols by an Anoxygenic Phototroph,” Proc. Nat. Acad. Sci. USA, 104, 15099–15104 (2007).

    Article  Google Scholar 

  215. J. L. Kirschvink and R. E. Kopp, “Palaeoproterozoic Ice Houses and the Evolution of Oxygen-Mediating Enzymes: the Case for a Late Origin of Photosystem II,” Phil. Trans. R. Soc. London B.363, 2755–2765 (2008).

    Google Scholar 

  216. J. L. Eigenbrode, K. H. Freeman, and R. E. Summons, “Methylhopane Biomarker Hydrocarbons in Hamersley Province Sediments Provide Evidence for Neoarchean Aerobiosis,” Earth Planet. Sci. Lett. 273(3–4), 323–331 (2008).

    Article  Google Scholar 

  217. J. L. Eigenbrode and K. H. Freeman, “Late Archean Rise of Aerobic Microbial Ecosystems,” Proc. Nat. Acad. Sci. USA 103(43), 15 759–15 764 (2006).

    Article  Google Scholar 

  218. T. Cavalier-Smith, “The Neomuran Origin of Archeobacteria, the Negibacterial Root of the Universal Tree and Bacterial Megaclassification,” Int. J. Syst. Evol. Microbiol. 52, 7–76 (2002).

    Google Scholar 

  219. A. Pearson, M. Budin, and J. J. Brocks, “Phylogenetic and Biochemical Evidence for Sterol Synthesis in the Bacterium Gemmata Obscuriglobus,” Proc. Nat. Acad. Sci. USA 100(26), 15 352–15 357 (2003).

    Article  Google Scholar 

  220. V. N. Sergeev, A. H. Knoll, J. P. Grotzinger, “Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northern Siberia,” J. Paleontol. 69(Suppl. 1), Paleontol. Soc. Mem. 39 (Pt. II), 1–37 (1995).

    Google Scholar 

  221. S. Golubic, V. N. Sergeev, and A H. Knoll, “Mesoproterozoic Archaeoellipsoides: Akinetes of Heterocystous Cyanobacteria,” Lethaia, No. 28, 285–298 (1995).

  222. R. W. Page, M. J. Jackson, and A. A. Krassay, “Constraining Sequences Stratigraphy in North Australian Basins: SHRIMP U-Pb Zircon Geochronology between Mt. Isa and McArthur River,” Aust. J. Earth Sci. 47, 431–459 (2000).

    Article  Google Scholar 

  223. P. Srivastava, “Vindhyan Akinites: an Indicator of Mesoproterozoic Biospheric Evolution,” Orig. Life Evol. Biosph. 35, 175–185 (2005).

    Article  Google Scholar 

  224. B. Amard and J. Bertrand-Sarfati, “Microfossils in 2000 Ma Old Cherty Stromatolites of the Franceville Group, Gabon,” Precambrian Res. 81, 197–221 (1997).

    Article  Google Scholar 

  225. V. N. Sergeev, Precambrian Silicified Microfossils: Nature, Classification and Biostratigraphic Significance (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  226. T.-M. Han and B. Runnegar, “Megascopic Eukaryotic Algae from the 2.1 Billion-Year-Old Negaunee Iron-Formation, Michigan,” Science 257, 232–235 (1992).

    Article  Google Scholar 

  227. H. J. Hofmann, “Proterozoic Carbonaceous Compression (“Metaphytes” and “Worms”),” in Early Life on Earth. Nobel Symposium No. 84, Ed. by S. Bengtson (Columbia Univ. Press, New York, 1994), pp. 342–357.

    Google Scholar 

  228. A. H. Knoll, “Breathing Room for Early Animals,” Nature 382, 111–112 (1996).

    Article  Google Scholar 

  229. H. J. Hofmann and Chen Jinbiao, “Carbonaceous Megafossils from the Precambrian (1800 Ma) near Jixian, Northern China,” Can. J. Earth Sci. 18, 443–447 (1981).

    Google Scholar 

  230. Sun Weiguo, Wang Guixiang, and Zhou Benhe, “Macroscopic Worm-Like Body Fossils from the Upper Precambrian (900–700 Ma), Huainan District, Anhui, China and Their Stratigraphic and Evolutionary Significance,” Precambrian Res. 31, 377–403 (1986).

    Article  Google Scholar 

  231. M. Steiner, “Die neoproterozoischen Megalgen Sudchinas”, Berliner Geowiss. Abh. (E) 15, 1–146 (1994).

    Google Scholar 

  232. S. H. Xiao, X. L. Yuan, M. Steiner, and A. H. Knoll, “Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: A Systematic Reassessment of the Miaohe Biota, South China,” J. Paleontol. 76, 347–376 (2002).

    Article  Google Scholar 

  233. M. B. Gnilovskaya, “The Oldest Tissue Differentiation in Precambrian (Vendian) Algae,” Paleontol. Zh., No. 2, 92–98 (2003) [Paleontol. J. 37, 196–204 (2003)].

  234. M. V. Leonov, “Macroscopic Plant Remains from the Base of the Ust’-Pinega Formation (Upper Vendian of the Arkhangelsk Region),” Paleontol. Zh., No. 6, 85–96 (2007) [Paleontol. J. 37, 683–691 (2007)].

  235. S. Xiao, A. H. Knoll, X. Yuan, and M. Pueschel, “Phosphatized Multicellular Algae in the Neoproterozoic Doushantuo Formation, China, and the Early Evolution of Florideophite Red Algae,” Am. J. Bot. 91, 214–227 (2004).

    Article  Google Scholar 

  236. E. L. Yochelson and M. A. Fedonkin, “A New Tissue-Grade Organism 1.5 Billion Years Old from Montana,” Proc. Biol. Soc. Washington 113(3), 843–847 (2000).

    Google Scholar 

  237. R. J. Horodyski, “Problematic Bedding-Plane Markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, Northwestern Montana,” J. Paleontol. 56, 882–889 (1982).

    Google Scholar 

  238. M. A. Fedonkin, E. L. Yochelson, and R. J. Horodyski, “Ancient Metazoa. National Geographic Research and Exploration,” 10, 201–223 (1994).

    Google Scholar 

  239. M. A. Fedonkin and E. L. Yochelson, “Middle Proterozoic (1.5 Ga) Horodyskia Monilformis Yochelson and Fedonkin, the Oldest Known Tissue Grade Colonial Eukaryote,” Smithsonian Contrib. Paleobiol., No. 94, 29 (2002).

  240. K. V. Evans, J. H. Aleinikoff, J. D. Obradovich, and C. M. Fanning, “SHRIMP U-Pb Geochronology of Volcanic Rocks, Belt Supergroup, Western Montana: Evidence for Rapid Deposition of Sedimentary Strata,” Can. J. Earth Sci. 37, 1287–1300 (2000).

    Article  Google Scholar 

  241. L. W. Buss, The Evolution of Individuality (Princeton Univ. Press, Princeton, 1987).

    Google Scholar 

  242. M. Wade, “Preservation of Soft-Bodied Animals in Precambrian Sandstones at Ediacara, South Australia,” Lethaia 1, 238–267 (1968).

    Article  Google Scholar 

  243. K. Grey and I. R. Williams, “Problematic Bedding-Plane Markings from the Middle Proterozoic Manganese Group, Bangemall Basin, Western Australia,” Precambrian Res. 46, 307–327 (1990).

    Article  Google Scholar 

  244. D. McB. Martin and A. M. Thorne, “New Insights into the Bangemall Supergroup,” Geol. Surv. West. Austral., Rec. 2001/5, 1–2 (2001).

  245. D. McB. Martin, “The Dawn of Multicellular Life: Evidence from the Bangemall Supergroup,” Geol. Surv. West. Austral. (Extended Abstracts), 18–19 (2003).

  246. K. Grey, I. R. Williams, D. McB. Martin, M. A. Fedonkin, et al., “New Occurrences of ’strings of Beads’ in the Bangemall Supergroup: A Potential Biostratigraphic Marker Horizon,” Geol. Surv. West. Austral. Annu. Rev. 2000–2001, 69–73 (2002).

  247. E. J. Javaux, A. H. Knoll, M. R. Walter, “Morphological and Ecological Complexity in Early Eukaryotic Ecosystems,” Nature 412, 66–69 (2001).

    Article  Google Scholar 

  248. E. J. Javaux, A. H. Knoll, and M. R. Walter, “Recognizing and Interpreting the Fossils of Early Eukaryotes,” Origins Life Biosph. 33, 75–94 (2003).

    Article  Google Scholar 

  249. N. J. Butterfield, “Probable Proterozoic Fungi,” Paleobiology 31, 165–182 (2005).

    Article  Google Scholar 

  250. T. N. Hermann and V. N. Podkovyrov, “Fungal Remains from the Late Riphean,” Paleontol. Zh., No. 2, 89–95 (2006) [Paleontol. J. 40, 207–214 (2006)].

  251. T. N. Hermann, “New Morphotypes from the Upper Riphean Lakhanda Microbiota of Siberia,” in Problems of the Onset and Evolution of the Biosphere, Ed. by E. M. Galimov (Librokom, Moscow, 2008), pp. 541–545 [in Russian].

    Google Scholar 

  252. Xunlai Yuan, Shuhai Xiao, and T. N. Taylor, “Lichen-Like Symbiosis 600 Million Years Ago,” Science 308, 1017–1020 (2005).

    Article  Google Scholar 

  253. E. P. Burford, M. Fomina, and G. M. Gadd, “Fungal Involvement in Bioweathering and Biotransformation of Rocks and Minerals,” Mineral. Mag. 67(6), 1127–1155 (2003).

    Article  Google Scholar 

  254. F. Lutzoni, M. Pagel, and V. Reeb, “Major Fungal Lineages Are Derived from Lichen Symbiotic Ancestors,” Nature 411, 937–940 (2001).

    Article  Google Scholar 

  255. N. J. Butterfield, A. H. Knoll, and K. Swett, “A Bangiophyte Red Alga from the Proterozoic of Arctic Canada,” Science 250, 104–107 (1990).

    Article  Google Scholar 

  256. N. J. Butterfield, “Bangiomorpha Pubescens N. Gen., N. Sp.: Implications for the Evolution of Sex, Multicellularity, and the Mesoproterozoic/Neoproterozoic Radiation of Eukaryotes,” Paleobiology 263, 386–404 (2000).

    Article  Google Scholar 

  257. T. N. Hermann, “Filamentous Organisms of the Lakhanda Formation, Maya River,” Paleontol. Zh., No. 2, 126–131 (1981).

  258. T. N. Hermann, Organic World One Billion Years Ago (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  259. N. J. Butterfield, “A Vaucheriacean Alga from the Middle Neoproterozoic of Spitsbergen: Implications for the Evolution of Proterozoic Eukaryotes and the Cambrian Explosion,” Paleobiology 30, 231–252 (2004).

    Article  Google Scholar 

  260. C. W. Allison and J. W. Hilgert, “Scale Microfossils from the Early Cambrian of Northwest Canada,” J. Paleontol. 60, 973–1015 (1986).

    Google Scholar 

  261. A. J. Kaufman, A. H. Knoll, and S. M. Awramik, “Biostratigraphic and Chemostratigraphic Correlation of Neoproterozoic Sedimentary Successions: Upper Tindir Group, Northwestern Canada, as a Test Case,” Geology 20, 181–185 (1992).

    Article  Google Scholar 

  262. J. M. Moldowan, S. A. Jacobsen, J. Dahl, et al., “Molecular Fossils Demonstrate Precambrian Origin of Dinoflagellates,” in The Ecology of the Cambrian Radiation, Ed. by A. Yu. Zhuravlev and R. Riding (Columbia Univ. Press, New York, 2001), pp. 474–493.

    Google Scholar 

  263. R. E. Summons, S. C. Brassell, G. Eglinton, et al., “Distinctive Hydrocarbon Biomarkers from Fossiliferous Sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona,” Geochim. Cosmochim. Acta 52, 2625–2637 (1988).

    Article  Google Scholar 

  264. G. Kleemann, K. Poralla, G. Englert, et al., “Tetrahymanol from the Phototrophic Bacterium Rhodopseudomonas Palustris: First Report of a Gammacerane Triterpene from a Prokaryote,” J. Gen. Microbiol. 136, 2551–2553, (1990).

    Google Scholar 

  265. S. M. Porter, “The Proterozoic Fossil Record of Heterotrophic Eukaryotes,” in Neoproterozoic Geobiology and Paleobiology, Ed. by Shuhai Xiao and A. J. Kaufman, (Springer, Amsterdam, 2006), pp. 1–21.

    Chapter  Google Scholar 

  266. A. H. Knoll, R. E. Summons, J. R. Waldbauer, and J. E. Zumberge, “The Geological Succession of Primary Producers in the Oceans,” in The Evolution of the Primary Producers in the Sea, Ed. by P. Falkowsky and A. H. Knoll (Elsevier, Burlington, 2007), pp. 133–163.

    Google Scholar 

  267. S. M. Porter and A. H. Knoll, “Testate Amoebae in the Neoproterozoic Era: Evidence from Vase-Shaped Microfossils in the Chuar Group, Grand Canyon,” Paleobiology 26, 360–385 (2000).

    Article  Google Scholar 

  268. S. M. Porter, R. Meisterfeld, and A. H. Knoll, “Vase-Shaped Microfossils from the Neoproterozoic Chuar Group, Grand Canyon; A Classification Guided by Modern Testate Amoeba,” J. Paleontol. 77, 409–429 (2003).

    Article  Google Scholar 

  269. J. W. Schopf, “Patterns of Proterozoic Microfossil Diversity: An Initial Tentative Analysis,” in The Proterozoic Biosphere: A Multidisciplinary Study, Ed. by J. W. Schopf and C. Klein (Cambridge Univ. Press, Cambridge, 1992), pp. 529–552.

    Google Scholar 

  270. V. N. Sergeev, Extended Abstracts of Doctoral Dissertation in Geology and Mineralogy (Geol. Inst. Ross. Akad. Nauk, Moscow, 2003).

    Google Scholar 

  271. M. S. Yakshin, K. E. Nagovitsin, and Sh. Faizullin, “Evolution of the Precambrian Algal Communities. News of Paleontology and Stratigraphy,” Geol. Geofiz. 45(Supplement), 21–32 (2004).

    Google Scholar 

  272. J. W. Huntley, S. Xiao, and M. Kowalewsky, “1.3 Billion Years of Acritarch History: An Empirical Morphospace Approach,” Precambrian Res. 144, 52–68 (2006).

    Article  Google Scholar 

  273. D. E. Canfield, “A Breath of Fresh Air,” Nature 400, 503–504 (1999).

    Article  Google Scholar 

  274. G. A. Zavarzin, Lectures on Natural Microbiology (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  275. A. H. Knoll, “The Geological Consequences of Evolution,” Geobiology, 1, 3–14 (2003).

    Article  Google Scholar 

  276. M. A. Semikhatov, E. Raaben, “Dynamics of the Global Diversity of Proterozoic Stromatolites. Article 1. Northern Eurasia, China, and India,” Stratigr. Geol. Korrelyatsiya 2(6), 10–32 (1994).

    Google Scholar 

  277. M. A. Semikhatov and M. E. Raaben, “Dynamics of the Global Diversity of Proterozoic Stromatolites. Article 2: Africa, Australia, North America, and General Synthesis,” Stratigraphiya. Geol. Korrelyatsiya 2(6), 10–32 (1994) [Stratigraphy. Geol. Correlation 2, 24–50 (1996)]

    Google Scholar 

  278. J. P. Grotzinger, W. Watters, and A. H. Knoll, “Calcareous Metazoans in Thrombolitic Bioherms of the Terminal Proterozoic Nama Group, Namibia,î Paleobiology 26, 334–359 (2000).

    Article  Google Scholar 

  279. J. P. Grotzinger, “Geochemical Model for Proterozoic Stromatolite Decline,” Am. J. Sci. 290, 80–103 (1990).

    Google Scholar 

  280. S. Zhu, S. Sun, X. Huang, et al., “Discovery of Carbonaceous Compressions and Their Multicellular Tissues from the Changzhougou Formation (1800 Ma) in the Yanshan Range, North China,” Chin. Sci. Bull. 45, 841–847 (2000).

    Article  Google Scholar 

  281. B. Gnilovskaya, “The Oldest Annelidomorphs from the Upper Riphean of Timan,” Dokl. Akad. Nauk 359(3), 369–372 (1998) [Dokl. Earth Sci. 359 334–337 (1998)].

    Google Scholar 

  282. M. B. Gnilovskaya, A. F. Veis, Yu. R. Bekker, et al., “Pre-Ediacaran Fauna from Timan (Annelidomorphs of the Late Riphean),” Stratigr. Geol. Korrelyatsiya 8(4), 11–39 (2000) [Stratigr. Geol. Correlation 8, 327–352 (2000)].

    Google Scholar 

  283. S. Weiguo, W. Guixiang, and Z. Benhe, “Macroscopic Worm-Like Body Fossils from the Upper Precambrian (900–700 Ma), Huainan District, Anhui, China and Their Stratigraphic and Evolutionary Significance,” Precambrian Res. 31, 377–403 (1986).

    Article  Google Scholar 

  284. G.-X. Wang, “Late Precambrian Annelida and Pogonophora from the Huanian of Anhui Province,” Bull. Tianjin Inst. Geol. Miner. Resour. 6, 9–22 (1982).

    Google Scholar 

  285. C. Li, J. Chen, and T. Hua, “Precambrian Sponges with Cellular Structures,” Science 279, 879–882 (1998).

    Article  Google Scholar 

  286. J. Chen, P. Oliveri, C. Li, G. Zhou, et al., “Precambrian Animal Diversity: Putative Phosphatized Embryos from the Doushantuo Formation of China,” Nat. Acad. Sci. Proc. 97, 4457–4462 (2000).

    Article  Google Scholar 

  287. S. Xiao and A. H. Knoll, “Phosphatized Embryos from the Neoproterozoic Doushantuo Formation,” J. Paleontol. 74, 767–788 (2000).

    Article  Google Scholar 

  288. S. Xiao, J. W. Hagadorn, C. Zhou, and X. Yuan, “Rare Helical Spheroidal Fossils from the Doushantuo Lagerstatte: Ediacaran Animal Embryos Come of Age?” Geology 35, 115–118 (2007).

    Article  Google Scholar 

  289. G. H. Barfod, F. Albarède, A. H. Knoll, et al., “New Lu-Hf and Pb-Pb Age Constraints on the Earliest Animal Fossils,” Earth Planet. Sci. Lett. 201, 203–212 (2002).

    Article  Google Scholar 

  290. D. Condon, M. Zhu, S. A. Bowring, et al., “U-Pb Ages from the Neoproterozoic Doushantuo Formation, China,” Science 308, 95–98 (2005).

    Article  Google Scholar 

  291. B. S. Sokolov, “Organic World of the Earth on the Way to the Phanerozoic Differentiation,” Vestn. Akad. Nauk SSSR, No. 1, 126–143 (1976).

  292. B. S. Sokolov, Essays on the Development of Vendian (KMK, Moscow, 1997) [in Russian].

    Google Scholar 

  293. The Vendian System: Historical-Geological and Paleontological Substantiation. V. 1. Paleontology V. 2. Regional Geology, Ed. by B. S. Sokolov, A. B. Iwanowsky, and M. A. Fedonkin (Springer, Berlin, 1990).

    Google Scholar 

  294. M. A. Fedonkin, Skeleton-Free Vendian Fauna and Its Role in the Metazoa Evolution (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  295. M. A. Fedonkin, “The Origin of the Metazoa in the Light of the Proterozoic Fossil Record,” Paleontol. Res. 7, 9–41 (2003).

    Article  Google Scholar 

  296. M. A. Fedonkin, J. G. Gehling, K. Grey, et al., The Rise of Animals. Evolution and Diversification of the Kingdom Animalia (John Hopkins Press, 2007).

  297. N. M. Chumakov and V. N. Sergeev, “Problem of Climatic Zoning in the Late Precambrian. Climate and Biospheric Events,” in Climate during Epochs of Biospheric Reconstructions, Ed. by M. A. Semikhatov and N. M. Chumakov, Tr. Geol. Inst. Ross. Akad. Nauk 550, 271–289 (2004).

  298. E. Gaidos, T. Dubuc, M. Dunford, et al., “The Precambrian Emergence of Animal Life: A Geobiological Perspective,” Geobiology, 5, 1–23 (2007).

    Article  Google Scholar 

  299. S. B. Hedges, H. Chen, S. Kumar, et al., “A Genomic Timescale for the Origin of Eukaryotes,” Evol. Biol. 1(4), 1–10 (2001).

    Google Scholar 

  300. J. Castresana and D. Moreira, “Respiratory Chains in the Last Common Ancestor of Living Organisms,” J. Mol. Evol. 49, 453–460 (1999).

    Article  Google Scholar 

  301. N. Glansdorff, Y. Xu, and B. Labedan, “The Last Universal Common Ancestor: Emergence, Constitution and Genetic Legacy of an Elusive Forerunner,” Biol. Direct 3(29), 1–35 (2008).

    Google Scholar 

  302. J. Xiong and C. E. Bauer, “Complex Evolution of Photosynthesis,” Annu. Rev. Plant Biol. 53, 503–521 (2002).

    Article  Google Scholar 

  303. G. Zubay, Origins of Life on Earth and in the Cosmos (Academic Press, San Diego, 2000).

    Google Scholar 

  304. D. Karl, A. Michaels, B. Bergman, D. Capone, et al., “Dinitrogen Fixation in the World’s Oceans,” Biogeochemistry, 57/58, 47–98 (2002).

    Article  Google Scholar 

  305. A. Tomitani, A. H. Knoll, C. M. Cavanaugh, and T. Ohno, “The Evolutionary Diversification of Cyanobacteria: Molecular-Phylogenetic and Paleontological Perspectives,” Proc. Nat. Acad. Sci. USA 103, 5442–5447 (2006).

    Article  Google Scholar 

  306. J. W. Grula, “Evolution of Photosynthesis and Biospheric Oxygenation Contingent upon Nitrogen Fixation?” Int. J. Astrobiol. 4(3–4), 251–257 (2005).

    Google Scholar 

  307. J. M. Madigan, J. Martinko, and J. Parker, Brock Biology of Microorganisms (Prentice Hall Inernat., New Jersey, 2000).

    Google Scholar 

  308. F. M. M. Morel and N. M. Price, “The Biogeochemical Cycles of Trace Metals in the Oceans,” Science 300, 944–947 (2003).

    Article  Google Scholar 

  309. I. Berman-Frank, P. Lundgren, and P. Falkowsky, “Nitrogen Fixation and Photosynthetic Oxygen Evolution in Cyanobacteria,” Res. Microbiol. 154, 157–164 (2003).

    Article  Google Scholar 

  310. J. Raymond, J. L. Siefert, C. R. Staples, and R. E. Blankenship, “The Natural History of Nitrogen Fixation,” Mol. Biol. Evol. 21(3), 541–554 (2004).

    Article  Google Scholar 

  311. R. P. Wayne, Chemistry of Atmosphere (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  312. R. Fani, R. Gallo, and P. Lio, “Molecular Evolution of Nitrogen Fixation: The Evolutionary History of the NifD, NifK, NifE, and NifN Genes”, J. Mol. Evol. 51, 1–11 (2000).

    Google Scholar 

  313. F. U. Battistuzzi and S. B. Hedges, “A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land,” Mol. Biol. Evol. 26(2), 335–343 (2009).

    Article  Google Scholar 

  314. D. E. Canfield, “The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels,” Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  315. D. C. Catling, M. W. Claire, “How Earth’s Atmosphere Evolved to an Oxic State: A Status Report,” Earth Planet. Sci. Lett. 237, 1–20 (2005).

    Article  Google Scholar 

  316. S. B. Hedges, J. E. Blair, M. L. Venturi, and J. L. Shoe, “A Molecular Timescale of Eukaryote Evolution and the Rise of Complex Multicellular Life,” BMC Evol. Biol. 4(2), 1–9 (2004).

    Google Scholar 

  317. H. S. Yoon, J. D. Hackett, C. Ciniglia, et al., “A Molecular Time Line for the Origin of Photosynthetic Eukaryotes,” Mol. Biol. Evol. 2(5), 809–818 (2004).

    Article  Google Scholar 

  318. G. C. Dismukes, V. V. Klimov, S. V. Baranov, et al., “The Origin of Atmospheric Oxygen on Earth: The Innovation of Oxygenic Photosynthesis,” Proc. Nat. Acad. Sci. USA 99, 2170–2175 (2001).

    Article  Google Scholar 

  319. J. L. Kirschvink, E. J. Gaidos, L. E. Bertani, et al., “Paleoproterozoic Snowball Earth: Extreme Climatic and Geochemical Global Change and Its Biological Consequences,” Proc. Nat. Acad. Sci. USA 97, 1400–1405 (2000).

    Article  Google Scholar 

  320. N. Lane, Oxygen, the Molecule That Made the World (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  321. A. H. Knoll, “The Early Evolution of Eukaryotes: A Geological Prospective,” Science 256, 622–627 (1992).

    Article  Google Scholar 

  322. C. J. Bjerrum and D. E. Canfield, “Ocean Productivity before about 1.9 Gyr Ago Limited by Phosphorus Adsorption onto Iron Oxides,” Nature 417, 159–162 (2002).

    Article  Google Scholar 

  323. V. S. Savenko and A. V. Savenko, Geochemistry of Phosphorus in the Global Hydrological Cycle (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  324. P. G. Falkowski, “Evolution of the Nitrogen Cycle and Its Influence on the Biological Sequestration of CO2 in the Ocean,” Nature 387, 272–275 (1997).

    Article  Google Scholar 

  325. K. Fennel, M. Follows, P. G. Falkowski, “The Co-Evolution of the Nitrogen, Carbon and Oxygen Cycles in the Proterozoic Ocean,” Am. J. Sci. 305, 526–545 (2005).

    Article  Google Scholar 

  326. M. L. Sogin, “Early Evolution and the Origin of Eukaryotes,” Curr. Opin. Genet. Dev. 1, 457–463 (1991).

    Article  Google Scholar 

  327. J. Tovar, G. Léon-Avila, B. Sánchez, et al., “Mitochondrial Remnant Organelles of Giardia Function in Iron-Sulfur Protein Maturation,” Nature 426, 172–176 (2003).

    Article  Google Scholar 

  328. R. Sutak, P. Dolezal, H. Fiumera, et al., “Mitichondrial-Type Assembly of FeS Centers in the Hydrogenosomes of the Amitochondriate Eukaryote Trichomonas Vaginalis,” Proc. Nat. Acad. Sci. USA 101, 10368–10373 (2004).

    Article  Google Scholar 

  329. D. S. Heckman, D. M. Geiser, B. R. Eidell, et al., “Molecular Evidence of Early Colonization of Land by Fungi and Plants,” Science, 293, 1129–1133 (2001).

    Article  Google Scholar 

  330. T. Y. James, F. Kauff, C. L. Schoch, et al., “Reconstructing the Early Evolution of Fungi Using a Six-Gene Phylogeny,” Nature 443, 818–822 (2006).

    Article  Google Scholar 

  331. G. A. Wray, J. S. Levinton, H. Shapiro, “Precambrian Divergences among Metazoan Phyla,” Science 274, 568–573 (1996).

    Article  Google Scholar 

  332. L. Bromham, A. Rambaut, R. Fortey, et al., “Testing the Cambrian Explosion Hypothesis by Using a Molecular Dating Technique,” Proc. Nat. Acad. Sci. USA 95, 12 386–12 389 (1998).

    Article  Google Scholar 

  333. D. Pisani, L. L. Poling, M. Lyons-Weiler, and S. B. Hedges, “The Colonization of Land by Animals: Molecular Phylogeny and Divergence Times among Arthropods,” BMC Evol. Biol. 2, 1–10 (2004).

    Google Scholar 

  334. E. J. P. Douzery, E. A. Snell, E. Bapteste, et al., “The Timing of Eukaryotic Evolution: Does a Relaxed Molecular Clock Reconcile Proteins and Fossils?” Proc. Nat. Acad. Sci. USA 101, 15386–15391 (2004).

    Article  Google Scholar 

  335. F. J. Ayala and A. Rzhetsky, “Origin of the Metazoan Phyla: Molecular Clocks Confirm Paleontological Estimates,” Proc. Nat. Acad. Sci. USA 95, 606–611 (1998).

    Article  Google Scholar 

  336. S. Conway Morris, “Molecular Clocks: Defusing the Cambrian “Explosion”?” Curr. Biol. 7, 71–74 (1997).

    Article  Google Scholar 

  337. K. J. Peterson, J. B. Lyons, K. S. Nowak, et al, “Estimating Metazoan Divergence Time with a Molecular Clock,” Proc. Nat. Acad. Sci. USA 101(17), 6536–6541 (2004).

    Article  Google Scholar 

  338. K. J. Peterson and N. J. Butterfield, “Origin of the Eumetazoa: Testing Ecological Predictions of Molecular Clock against the Proterozoic Fossil Record,” Proc. Nat. Acad. Sci. USA 102(27), 9547–9652 (2005).

    Article  Google Scholar 

  339. J. E. Blair and S. B. Hedges, “Molecular Clocks Do not Support the Cambrian Explosion,” Mol. Biol. Evol. 22(3), 387–390 (2005).

    Article  Google Scholar 

  340. M. Jones and M. Blaxter, “Animals Roots and Shoots,” Nature 434, 1076–1077 (2005).

    Article  Google Scholar 

  341. V. Wood, R. Gwilliam, et al., “The Genome Sequence of Schizosaccharomyces Pombe,” Nature 415, 871–880 (2002).

    Article  Google Scholar 

  342. G. J. Vermeij and D. R. Lindberg, “Delayed Herbivory and the Assembly of Marine Benthic Ecosystems,” Paleobiology 26, 419–430 (2000).

    Article  Google Scholar 

  343. J. Pawlowski, M. Holzmann, C. Berney, et al., “The Evolution of Early Foraminifera,” Proc. Nat. Acad. Sci. USA 100, 11 494–11 498 (2003).

    Article  Google Scholar 

  344. D. Penny, “Relativity for Molecular Clocks,” Nature 436, 183–184 (2005).

    Article  Google Scholar 

  345. J. L. Kirschvink, “Late Proterozoic Low Latitude Glaciation: The Snowball Earth,” in The Proterozoic Biosphere, A Multidisciplinary Study, Ed. by J. W. Schopf and C. Klein (Cambridge University Press, Cambridge, 1992), pp. 51–52.

    Google Scholar 

  346. P. F. Hoffman and D. P. Schrag, “The Snowball Earth Hypothesis: Testing the Limits of Global Change,” Terra Nova 14, 129–155 (2002).

    Article  Google Scholar 

  347. M. S. Y. Lee, “Molecular Clock Calibrations and Metazoan Divergence Dates,” J. Mol. Evol. 49, 385–391 (1999).

    Article  Google Scholar 

  348. L. P. Tatarinov, “Modern Tendencies in the Evolution of Phylogenetic Studies,” Vestn. Ross. Akad. Nauk 74(6), 515–523 (2004) [in Russian].

    Google Scholar 

  349. T. D. Brock, Thermophilic Microorganisms and Life at High Temperature (Springer, New York, 1978).

    Google Scholar 

  350. T. D. Brock, “Introduction: An Overview of the Thermophiles,” in Thermophiles, General, Molecular and Applied Microbiology, Ed. by T. D. Brock (Wiley-Interscience, New York, 1986), pp. 1–16.

    Google Scholar 

  351. K. O. Stetter, “Diversity of Extremely Thermophilic Archaebacteria,” in Thermophiles, General, Molecular and Applied Microbiology, Ed. by T. D. Brock (Wiley-Interscience, New York, 1986), pp. 39–74.

    Google Scholar 

  352. R. W. Castenholz, “Evolution and Ecology of Thermophilic Microorganisms,” in Strategies of Microbial Life in Extreme Environments, Ed. by M. Shilo (Verlag Chemie, Weinhem, 1979), pp. 373–392.

    Google Scholar 

  353. L. J. Rothschild and R. L. Mancinelli, “Life in Extreme Environment,” Nature 409, 1092–1101 (2001).

    Article  Google Scholar 

  354. A.-L. Reysenbach and E. Schock, “Merging Genomes with Geochemistry in Hydrothermal Ecosystems,” Science 296, 1077–1082 (2002).

    Article  Google Scholar 

  355. E. G. Nisbet and N. H. Sleep, “The Habitat and Nature of Early Life,” Nature 409, 1083–1091 (2001).

    Article  Google Scholar 

  356. N. M. Chumakov, “Glacial and Glacier-Free Climate in the Precambrian”, in Climate and Epochs of Large Biospheric Reconstructions, Ed. by M. A. Semikhatov and N. M. Chumakov, Tr. Geol. Inst. Ross. Akad. Nauk 550, 259–270 (2004).

  357. L. P. Knauth and D. R. Lowe, “High Archean Climatic Temperature Inferred from Oxygen Isotope Geochemistry of Cherts in the 3.5 Ga Swaziland Supergroup, South Africa,” Bull. Geol. Soc. Am. 115, 566–580 (2003).

    Article  Google Scholar 

  358. F. Robert and M. Chaussidon, “A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts,” Nature 443, 969–972 (2006).

    Article  Google Scholar 

  359. E. A. Gaucher, S. Govindarajan, and O. K. Ganesh, “Palaeotemperature Trend for Precambrian Life Inferred from Resurrected Proteins,” Nature 451, 704–707 (2008).

    Article  Google Scholar 

  360. A. Clarke, “Evolution and Lower Temperature,” in Evolution on Planet Earth. The Impact of the Physical Environment, Ed. by J. Rothschild and A. M. Lister (Academic Press, London, 2003), pp. 187–207.

    Chapter  Google Scholar 

  361. M. A. Semikhatov, Vl. A. Komar, S. N. Serebryakov, et al., Yudoma Complex of the Stratotype Area, Tr. Geol. Inst. Akad. Nauk SSSR 210 (1970).

  362. A. H. Knoll and J. Bauld, “The Evolution of Ecological Tolerance in Prokaryotes,” Trans. R. Soc. Edinburgh Earth Sci. 80, 209–223 (1989).

    Google Scholar 

  363. Z. Petrášek, F.-J. Schmitt, C. Theiss, et al., “Excitation Energy Transfer from Phycobiliprotein to Chlorophyll d in Intact Cells of Acaryochloris Marina Studied by Time- and Wavelength-Resolved Fluorescence Spectroscopy,” Photochem. Photobiol. Sci., No. 4, 1016–1022 (2005).

  364. K. Ya. Kondrat’ev and P. P. Fedchenko, “Effect of Solar Radiation Spectra on the Evolution of the Biosphere,” Vestn. Ross. Akad. Nauk 75, 522–532 (2005).

    Google Scholar 

  365. D. V. Hoyt and K. H. Schatten, The Role of the Sun in Climate Change (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  366. T. Fenchel and B. J. Finlay, Ecology and Evolution in Anoxic Worlds (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  367. R. J. P. Williams and J. J. R. Frausto da Silva, Bringing Chemistry to Life: From Matter to Man (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  368. T. A. Krulwich and A. A. Guffani, “Physiology of Acydophilic and Alkalophylic Bacteria,” Adv. Microbial Physiol. 24, 173–213 (1983).

    Article  Google Scholar 

  369. T. A. Langworthy, “Microbial Life in Extreme pH Values,” in Microbial Life in Extreme Environments, Ed. by D. J. Kushner (Academic Press, London, 1978), pp. 279–315.

    Google Scholar 

  370. W. D. Grant and B. J. Tindall, “The Alkaline Saline Environment,” in Microbes in Extreme Environments, Ed. by R. A. Herbert and G. A. Codd (Academic Press, London, 1986), pp. 25–54.

    Google Scholar 

  371. A. Meyer, “Molecular Evolution: Duplication, Duplication,” Nature 421, 31–32 (2003).

    Article  Google Scholar 

  372. D. I. Arnon, “The Discovery of Ferredoxin: The Photosynthetic Path,” Tr. Biochem. Sci. 13, 30–33 (1988).

    Article  Google Scholar 

  373. R. M. Daniel and M. J. Danson, “Did Primitive Microorganisms Use Nonhem Iron Proteins in Place of NAD/P?” J. Mol. Evol. 40, 559–563 (1995).

    Article  Google Scholar 

  374. J. Piaget, Le Structuralisme (Presses Universitaires de France, Paris, 1968).

    Google Scholar 

  375. D. Moreira and P. Lopez-Garcia, “Symbiosis between Methanogenic Archaea and Delta-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis,” J. Mol. Evol. 47, 517–530 (1998).

    Article  Google Scholar 

  376. D. C. Horner, P. G. Foster, and T. M. Embley, “Iron Hydrogenases and the Evolution of Anaerobic Eukaryotes,” Mol. Biol. Evol. 17(11), 1695–1709 (2000).

    Google Scholar 

  377. B. D. Dyer and R. A. Obar, Tracing the History of Eukaryotic Cells: The Enigmatic Smile. Critical Moments in Paleobiology and Earth History Series (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  378. J. L. Bada and A. Lazcano, “Some Like It Hot, but not the First Biomolecules,” Science 296, 1982–1983 (1982).

    Article  Google Scholar 

  379. F. Baymann, E. Lebrun, M. Brugna, et al., “The Redox Protein Construction Kit: Pre-Last Universal Common Ancestor Evolution of Energy-Conserving Enzymes,” Phil. Trans. R. Soc. London B358, 267–274 (2003).

    Google Scholar 

  380. S. A. M. Kooijman and R. Hengeveld, “The Symbiotic Nature of Metabolic Evolution,” in Current Themes in Theoretical Biology, Ed. by T. A. C. Reydon and L. Hemerik (Springer, London, 2005), pp. 159–202.

    Chapter  Google Scholar 

  381. L. Margulis, M. F. Dolan, and R. Guerrero, “The Chimeric Eukaryote: Origin of the Nucleus from the Karyomastigont in Amitochondriate Protists,” Proc. Nat. Acad. Sci. USA 97(13), 6954–6959 (2000).

    Article  Google Scholar 

  382. J. P. Amend and E. L. Shock, “Energetics of Overall Metabolic Reactions of Thermophilic and Hyperthermophilic Archaea and Bacteria,” FEMS Microbiol. Rev. 25, 175–243 (2001).

    Article  Google Scholar 

  383. E. C. Cox and J. T. Bonner, “The Advantages of Togetherness,” Science 292, 448–449 (2001).

    Article  Google Scholar 

  384. M. A. Fedonkin, “Cold Dawn of Animal Life,” Priroda, No. 9, 3–11 (2000).

  385. G. Shields and J. Veizer, “Precambrian Marine Carbonate Isotope Database: Version 1.1,” Geochem. Geophys. Geosyst. 3(6), 1031 (2002).

    Article  Google Scholar 

  386. D. E. Canfield, “A New Model for Proterozoic Ocean Chemistry,” Nature 396, 450–453 (1998).

    Article  Google Scholar 

  387. Y. Shen, A. H. Knoll, and M. Walter, “Evidence for Low Sulphate and Deep Water Anoxia in a Mid-Proterozoic Marine Basin,” Nature 423, 632–635 (2003).

    Article  Google Scholar 

  388. G. A. Logan, J. M. Hayes, G. B. Hieshima, and R. E. Summons, “Terminal Proterozoic Reorganization of Biogeochemical Cycles,” Nature 376, 53–536 (1995).

    Article  Google Scholar 

  389. V. G. Bogorov, Plankton of the World Ocean (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  390. M. E. Vinogradov and A. P. Lisitsyn, “Global Regularities in the Distribution of Life over the Ocean and Their Reflection in the Composition of Bottom Sediments. Regularities in the Distribution of Plankton and Bethos in the Ocean,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 5–24 (1981).

  391. B. B. Nazarov and A. R. Ormiston, “Evolution of the Radiolaria in the Paleozoic and Its Correlation with the Development of Other Marine Fossil Groups,” Senckenbergiana Lethaea 66, 203–215 (1985).

    Google Scholar 

  392. J. Veizer, W. T. Holser, C. K. Wilgus, “13C/12C and 34S/32S Secular Variations,” Geochim. Cosmochim. Acta 44, 579–587 (1980).

    Article  Google Scholar 

  393. J. M. Hayes, I. B. Lambert, and H. Strauss, “The Sulfur-Isotopic Record,” in The Proterozoic Biosphere, A Multidisciplinary Study, Ed. by J. W. Schopf and C. Klein (Cambridge Univ. Press, Cambridge, 1992), pp. 129–132.

    Google Scholar 

  394. D. E. Canfield and A. Teske, “Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phlyogenetic and Sulphur-Isotope Studies,” Nature 382, 127–132 (1995).

    Article  Google Scholar 

  395. D. H. Rothman, “Atmospheric CO2 Levels for the Last 500 Million Years,” Proc. Nat. Acad. Sci. USA 99, 4167–4171 (2001).

    Article  Google Scholar 

  396. M. E. Katz, Z. V. Finkel, D. Grzebyk, A. H. Knoll, and P. G. Falkowski, “Evolutionary Trajectories and Biogeochemical Impact of Marine Eukaryotic Phytoplankton,” Annu. Rev. Ecol. Evol. Syst. 35, 523–556 (2004).

    Article  Google Scholar 

  397. E. L. Yochelson and M. A. Fedonkin, Paleobiology of Climactichnites, an Enigmatic Late Cambrian Fossil, Smithsonian Contrib. Paleobiol. (Smithsonian Institution Press, Washington, 1993), No. 74.

    Google Scholar 

  398. V. I. Vernadsky, Thoughts of a Naturalist. Scientific Idea as a Planetary Phenomenon (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  399. D.I. Groves, F.P. Bierlein, “Geodynamic Settings of Mineral Deposit Systems,” J. Geol. Soc. 164, 19–30, (2007).

    Article  Google Scholar 

  400. L. R. Kump, “The Rise of Atmosrheric Oxygen,” Nature 451, 277–278 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fedonkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedonkin, M.A. Eukaryotization of the early biosphere: A biogeochemical aspect. Geochem. Int. 47, 1265–1333 (2009). https://doi.org/10.1134/S0016702909130011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909130011

Keywords

Navigation