Skip to main content
Log in

Geochemistry of fresh groundwater in the main landscape zones of the Earth

  • Published:
Geochemistry International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. I. Vernadsky, History of Natural Waters (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  2. H. Schoeller, Géochemie des eaux souterraines (Paris, 1965).

  3. A. M. Ovchinnikov, Hydrogeochemistry (Nedra, Moscow, 1970) [in Russian].

    Google Scholar 

  4. E. V. Posokhov, General Hydrogeochemistry (Nedra, Leningrad, 1975) [in Russian].

    Google Scholar 

  5. V. S. Samarina, Hydrogeochemistry (Leningrad. Gos. Univ., Leningrad, 1977) [in Russian].

    Google Scholar 

  6. S. L. Shvartsev, Hydrogeochemistry of the Supergene Zone (Nedra, Moscow, 1978) [in Russian].

    Google Scholar 

  7. K. E. Pit’eva, Hydrogeochemistry (Mosk. Gos. Univ., Moscow, 1978) [in Russian].

    Google Scholar 

  8. W. Stumm and J. J. Morgan, Aquatic Chemistry, 2nd ed. (Wiley, New York, 1981).

    Google Scholar 

  9. G. Mathess, The Properties of Groundwater (Wiley, New York, 1982).

    Google Scholar 

  10. S. L. Shvartsev, E. V. Pinneker, A. I. Perel’man, et al., Principles of Hydrogeology. Hydrogeochemistry (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  11. A. I. Perel’man, Geochemistry of Natural Waters (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  12. T. Pačes, Zaklady geochemie vod (Academia, Praha, 1983).

    Google Scholar 

  13. J. D. Hem, Study and Interpretation of the Chemical Characteristics of Natural Water, U.S. Geol. Surv. Water Supply Pap., No. 2254 (1985).

  14. J. W. Lloyd and J. A. Heathcote, Natural Inorganic Hydrochemistry in Relation to Groundwater (Clarendon Press, Oxford, 1985).

    Google Scholar 

  15. S. R. Krainov and V. M. Shvets, Geochemistry of Groundwaters of Economic and Potable Use (Nedra, Moscow, 1987) [in Russian].

    Google Scholar 

  16. A. Macioszczyk, Hydrogeochemia (Wydawnictwa Geologiczne, Warszawa, 1987).

    Google Scholar 

  17. J. I. Drever, The Geochemistry of Natural Waters, 2nd ed. (Prentice Hall, Englewood Cliffs, 1988).

    Google Scholar 

  18. P. A. Domenico and F. W. Schwartz, Physical and Chemical Hydrogeology (Wiley, New York, 1990).

    Google Scholar 

  19. S. R. Krainov and V. M. Shvets, Hydrogeochemistry (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  20. G. Matthess, F. H. Frimmel, P. Hursch, et al., Progress in Hydrogeochemistry (Springer, Berlin, 1992).

    Google Scholar 

  21. V. A. Kiryukhin, A. I. Korotkov, and S. L. Shvartsev, Hydrogeochemistry (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  22. C. A. J. Appelo and D. Postma, Geochemistry, Groundwater and Pollution (Balkema, Rotterdam, 1994).

    Google Scholar 

  23. S. L. Shvartsev, General Hydrogeology (Nedra, Moscow, 1996) [in Russian].

    Google Scholar 

  24. W. J. Deutsch, Groundwater Geochemistry. Fundamentals and Applications to Contamination (Lewis, Boca Raton, 1997).

    Google Scholar 

  25. P. F. Hudak, Principles of Hydrogeology, 2nd ed. (Lewis, Boca Raton, 1999).

    Google Scholar 

  26. E. V. Pinneker, Ecological Problems of Hydrogeology (Nauka, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  27. I. S. Zektser and L. G. Everett, Groundwater and the Environment. Applications for the Global Community (Lewis, Boca Raton, 2000).

    Google Scholar 

  28. J. H. Montgomery, Ground Water Chemicals. Desk Reference, 3rd ed. (Lewis, Boca Raton, 2000).

    Google Scholar 

  29. S. L. Shvartsev, Hydrogeochemistry of the Supergene Zone, 2nd ed. (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  30. R. F. Black, “Permafrost,” Bull. Geol. Soc. Am. 85, 839–855 (1954).

    Article  Google Scholar 

  31. E. D. Ershov, General Geocryology (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  32. A. E. Kontorovich, M. A. Sadikov, and S. L. Shvartsev, “Distribution of Some Chemical Elements in the Surface and Ground Waters of the Northwestern Siberian Platform,” Dokl. Akad. Nauk SSSR 149, 179–181 (1963).

    Google Scholar 

  33. S. L. Shvartsev, “Some Results of Hydrogeochemical Studies under Permafrost Conditions,” Geol. Rudn. Mestorozhd., No. 2, 100–110 (1963).

  34. S. L. Shvartsev, “On the Hydrogeochemical Prospecting Method in Northern Wetlands,” Geol. Geofiz., No. 11, 69–74 (1973).

  35. S. L. Shvartsev and N. G. Shubenin, “Character of the Formation of Trace Element Composition in the Groundwaters of the Cryogenic Zone: Evidence from the Western Siberian Platform,” Geol. Geofiz., No. 11, 69–74 (1973).

  36. M. E. Korolev, Trace Element Distribution in the Natural Waters of the Yenisei Range (Kazanskii Univ., Kazan, 1973) [in Russian].

    Google Scholar 

  37. P. A. Udodov, I. P. Onufrienok, and Yu. O. Parilov, Experience of Hydrogeochemical Studies in Siberia (Vysshaya shkola, Moscow, 1962) [in Russian].

    Google Scholar 

  38. Yu. D. Pogrebnyak, Gold in the Natural Waters of Transbaikalia (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  39. Yu. D. Pogrebnyak and V. V. Tolochko, Hydrogeochemical Prospecting of Ore Deposits in Transbaikalia (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  40. L. V. Zamana and N. M. Gladkaya, “Geochemical Features of Natural Waters from the Urov Biogeochemical Region,” Geokhimiya, No. 2, 269–280 (1993).

  41. V. K. Kashin and G. M. Ivanov, “Nickel in Natural Waters of Transbaikalia,” Vodn. Resur., No. 3, 311–314 [Water Resour. 24, 285–288 (1997)]

  42. M. N. Kosolapova, “Trace Components in the Natural Waters of the Olenek River Basin,” in Geochemical Studies of Gold and Trace Elements in Yakutia (Akad. Nauk SSSR, 1963), pp. 56–74 [in Russian].

  43. V. I. Kuznetsov, “Geochemical Characteristics of the Upper Arman Area on the Basis of Hydrogeochemical Sampling,” Geokhimiya, No. 9, 1137–1143 (1969).

  44. N. P. Anisimova, Formation of the Chemical Composition of Groundwaters of Taliks Exemplified by Central Yakutia (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  45. V. P. Volkova, “Chemical Composition of the Natural Waters of the Mirny Region of the Yakutian ASSR,” Merzlotnye Issled., No. 11, 152–160 (1971).

  46. N. I. Chizhova, “Geochemistry of the Natural Waters of the Yana-Omoloi Interfluve,” Merzlotnye Issled., No. 14, 109–115 (1971).

  47. I. B. Nikitina, Geochemistry of Ultrafresh Waters of Permafrost Terrains (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  48. L. G. Filimonova, Fluorine Geochemistry in the Supergene Zone of Permafrost Areas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  49. V. N. Makarov, V. I. Fedoseeva, and N. F. Fedoseev, Geochemistry of the Yakutian Snow Cover (Yakutsk, 1990) [in Russian].

  50. E. W. Lohr, “Chemical Character of Public Water Supplies of the Larger Cities of Alaska, Hawaii and Puerto Rico,” U.S. Geol. Surv. Water-Supply Pap., No. 1460-A (1957).

  51. R. W. Boyle, E. L. Pekar, and P. R. Patterson, “Geochemical Investigation of Heavy Metal Content of Streams and Springs in the Galena Hill-Mount Haldane Area, Yukon Territory,” Geol. Surv. Can. Bull. 36, 34 (1956).

    Google Scholar 

  52. R. W. Boyle and J. Tupper, Geochemistry of Pb, Zn, Cu, As, Sb, Mo, Sn, W, Ag, Ni, Co, Cr, Ba and Mn in the Waters and Stream Sediments of the Bathurst Jacquet River District, New Brunswick (Ottawa, 1966).

  53. A. Rozkowski, “Chemistry of Ground Water and Surface Water in the Moose Mountain Area, Southern Saskatchewan,” Geol. Surv. Can. Pap., No. 67–9, 37–45 (1969).

  54. R. J. Allan and E. H. W. Hornbrook, “Exploration Geochemistry. Evaluation Study in a Region of Continuous Permafrost, Northwest Territories, Canada,” Can. Inst. Min. Metal. Spec. Vol. 11, 53–66 (1971).

    Google Scholar 

  55. R. J. Allan, E. M. Cameron, and C. C. Durham, “Lake Geochemistry-a Low Sample Density Technique for Reconnaissance Geochemical Exploration and Mapping of the Canada Shield,” in Proceedings of 4th Int. Geochem. Expl. Symp., London, 1972 (London, 1972), pp. 131–160.

  56. W. Dyck, A. K. Chatterjee, D. E. Gemmell, and K. Murricane, “Well Water Trace Element Reconnaissance, Eastern Maritime, Canada,” Geochem. Explor. 6, 139–162 (1976).

    Article  Google Scholar 

  57. J. C. Méranger, K. S. Subramanian, and Ch. Chalifaux, “Survey for Cadmium, Cobalt, Chromium, Copper, Nickel, Lead, Zinc, Calcium and Magnesium in Canadian Drinking Water Supplies,” J. Assoc. Anal. Chem. 64, 44–53 (1981).

    Google Scholar 

  58. A. A. Antonov, “On the Chemical Composition of Waters from the Khibina Alkaline Massif,” Byull. Mosk. O-va Ispyt. Prir. Otd. Geol. 39(2), 104–113 (1964).

    Google Scholar 

  59. C. Reimann, D. Banks, I. Bogatyrev, et al., “Lake Water Geochemistry on the Western Kola Peninsula, North-West Russia,” Appl. Geochem. 14, 787–805 (1999).

    Article  Google Scholar 

  60. T. T. Taisaev, Geochemistry of Taiga-Permafrost Landscapes and Prospecting of Ore Deposits (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  61. N. P. Anisimova, Cryogeochemical Features of the Frozen Zone (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  62. S. V. Alekseev, Cryogenesis of Groundwaters and Rocks (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  63. A. I. Perel’man and N. S. Kasimov, Landscape Geochemistry, 3rd ed. (Astreya, Moscow, 1999) [in Russian].

    Google Scholar 

  64. L. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and Biological Cycle in the Main Types of Vegetation (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  65. S. L. Shvartsev, “Chemical Composition of the Groundwaters of Tropical Countries as Exemplified by Guinea,” Geokhimiya, No. 1, 100–109 (1972).

  66. G. Rougérie, Le faconnement actuel des modéles en Cote d’Ivoire forestiere. Memoires d’Afrique noire (Ifan, Dakar, 1960).

    Google Scholar 

  67. D. Orange and J. Y. Gac, “Reconnaissance géochimique des eaux du Fouta Djalon (Guinee). Flux de matiéres dissoutes et en suspension en Haute-Gambia,” Geodyn. 5, 35–49 (1990).

    Google Scholar 

  68. Y. Tardy, Géochimie des altérations. Études des arénes et des eaux de quelques massifs cristallins d’Europe et d’Afrique (Strasbourg, 1969).

  69. I. M. Wackermann, “Corrélations géochimiques entre eaux phréatiques et niveaux aquiféres dans les manteaux d’altération du Sénégal oriental,” Cah. ORSTROM Ser. Geol. 4, 77–89 (1972).

    Google Scholar 

  70. I. W. du Preez and W. Barber, The Distribution and Chemical Quality of Ground-Water in Northern Nigeria (Lagos, 1965).

  71. K. B. Pelig-Ba, “Trace Elements in Groundwater from Some Crystalline Rocks in the Upper Regions of Ghana,” Water, Air, Soil Pollut. 103, 71–89 (1998).

    Article  Google Scholar 

  72. Yu. Yu. Bugel’skii and F. Formel-Kortina, “Hydrogeochemical Regularities of the Formation of Laterite Weathering Mantles in Cuba,” in Weathering Mantles and Bauxite Deposits (Moscow, 1973), pp. 199–217 [in Russian].

  73. Yu. Yu. Bugel’skii, Ore-Bearing Weathering Mantles of Humid Tropics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  74. G. Weninger, “Beiträge zum Chemismus der Gewässer von Neukaledonien (SW-Pazifik),” Cah. ORSTOM Ser. Hydrobiol. 2, 35–55 (1968).

    Google Scholar 

  75. I. I. Trescases, “Géochemie des altérations et des eaux de surface dans le massif ultrabasique du sud de la Nouvelle Calédonie,” Bull. Sew. Carte Géol. Alsace Lorraine 22(4), 329–354 (1969).

    Google Scholar 

  76. V. M. Fridland, Soils and Weathering Residues of Humid Tropics: Evidence from North Vietnam (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  77. S. H. Patterson and C. E. Robertson, “Weathered Basalt in the Eastern Part of Kauai, Hawaii,” U.S. Geol. Surv. Prof. Pap., No. 424-C, 195–198 (1961).

  78. S. H. Patterson, “Investigations of Ferruginous Bauxite and Other Mineral Resources on Kauai and a Reconnaissance of Ferruginous Bauxite Deposits on Maui, Hawaii,” U.S. Geol. Surv. Prof. Pap. 656 (1971).

  79. R. L. Hay and B. F. Jones, “Weathering of Basaltic Tephra on the Island of Hawaii,” Geol. Soc. Am. Bull. 83(2), 317–332 (1972).

    Article  Google Scholar 

  80. J. Bouléque, M. F. Benedetti, and P. Bildger, “Geochemistry of Water Associated with Current Karst Bauxite Formation, Southern Peninsula of Haiti,” Appl. Geochem. 4, 37–47 (1989).

    Article  Google Scholar 

  81. R. Scotte and F. Barker, Data on Uranium and Radium in Ground Water in the United States, 1954 to 1957 (Washington, 1962).

  82. M. W. Skougstad and C. A. Horr, “Occurrence and Distribution of Strontium in Natural Water,” U.S. Geol. Surv. Water-Supply Pap., No. 1496-D (1963).

  83. D. E. White, I. D. Hem, and G. A. Waring, “Chemical Composition of Subsurface Waters,” U.S. Geol. Surv. Prof. Pap., No. 440 (1963).

  84. S. N. Davis, “Silica in Streams and Ground Water,” Am. J. Sci. 262, 870–881 (1964).

    Google Scholar 

  85. J. J. Geraghty, D. W. Miller, F. van der Leeden, and F. L. Troise, Water Atlas of the United States (Water Information Center, Washington, 1973).

    Google Scholar 

  86. W. D. Silvey, “Occurrence of Selected Minor Elements in the Waters of California,” U.S. Geol. Surv. Water-Supply Pap., No. 1535-L (1967).

  87. K. S. Johnson, P. M. Stout, W. M. Berelson, et al., “Cobalt and Copper Distributions in the Waters of Santa Monica Basin, California,” Nature, No. 6164, 527–530 (1988).

  88. M. Benedetti, O. Menard, Y. Noack, et al., “Water-Rock Interactions in Tropical Catchments: Field Rates of Weathering and Biomass Impact,” Chem. Geol. 118,(1–4), 203–220 (1994).

    Article  Google Scholar 

  89. G. I. Bushinskii, Geology of Bauxites (Nedra, Moscow, 1971) [in Russian].

    Google Scholar 

  90. V. G. Hill and A. C. Ellington, “Chemical Characteristics of the Ground Water Resources of Jamaica,” Econ. Geol. 56(3), 533–542 (1961).

    Google Scholar 

  91. I. B. Mullor, L. O. de Bielsa, I. B. Vigil, and B. L. de Abramovich, “Estudio yodofluorthidrologicode la provincia de Santa-Fe,” Rev. Fac. Ing. Quim. Univ. Nac. Litorel. 40–41, 217–233 (1973).

    Google Scholar 

  92. E. A. Lisitsina and M. A. Glagoleva, “On the Geochemistry of Weathering Residues after Mafic Rocks in the Batumi Shore, Caucasus,” in Weathering Residues (Moscow, 1968) [in Russian].

  93. M. Ishikawa and N. Tase, “Geochemistry of Waters in Northeastern Brazil,” Ann. Rept. Inst. Geosci. Univ. Tsukuba, No. 6, 38–40 (1979).

  94. A. Virmond and L. Bittencourt, “Aspecto hidrogeoqumicos da alteracao intemperica de basaltes da basia do Parana: Basia hidrogratica do Jacutinda,” Rev. Brasil. Geocienc. 10(3), 202–212 (1980).

    Google Scholar 

  95. W. O. Andrade, M. L. Machesky, and A. W. Rose, “Gold Distribution and Mobility in the Surficial Environment, Carajas Region, Brazil,” Geochem. Explor. 40(1–3), 95–114 (1991).

    Article  Google Scholar 

  96. A. M. Korotkii, N. G. Razzhigaeva, L. A. Ganzei, and V. G. Volkov, Islands of the Vietnam Shelf. Relief, Sediments, and Evolution (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  97. V. S. Savenko and E. A. Zakharova, “Phosphorus in the Water of the Primary Hydrographic Network,” Vodn. Resur., No. 3, 292–299 (1997) [Water Resour. 24, 266–273 (1997)]

  98. J. A. Lenheer, R. L. Malcolm, P. W. Mckinley, and L. A. Eccles, “Occurrence of Dissolved Organic Carbon in Selected Ground Water Samples in the United States,” J. Res. U.S. Geol. Surv. 2, 361–369 (1974).

    Google Scholar 

  99. N. A. Roslyakov, V. P. Kovalev, F. V. Sukhorukov, et al., Ecogeochemistry of Western Siberia (SO RAN, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  100. Scientific Prerequisites for the Development of Swamps in Western Siberia, Ed. by M. I. Neishtadt (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  101. P. A. Udodov, P. N. Parshin, B. M. Levashov, et al., Hydrogeochemical Studies of the Kolyvan-Tom Fold Zone (Tomsk. Gos. Univ., Tomsk, 1971) [in Russian].

    Google Scholar 

  102. G. M. Rogov and V. K. Popov, Hydrogeology and Catagenesis of the Rocks of the Kuznetsk Basin (Tomsk. Gos. Univ., Tomsk, 1985) [in Russian].

    Google Scholar 

  103. Yu. G. Pokatilov, Element Biogeochemistry and Noseography of Southern Middle Siberia (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  104. Yu. G. Kopylova, E. M. Dutova, and T. I. Romanova, “Ecological-Geochemical State of the Groundwaters of Mountain Taiga Landscapes of the Salair,” Obskoi Vestn., Nos. 3–4, 100–104 (1999).

  105. Yu. G. Kopylova, T. I. Romanova, I. V. Smetanina, and A. A. Khvashchevskaya, “Conditions of the Formation of Fluorine-Bearing Waters in the Main Landscape Zones of Southeastern Western Siberia,” Obskoi Vestn., No. 1, 6–12 (2001).

  106. N. M. Rasskazov, S. L. Shvartsev, N. A. Trifonova, and N. G. Nalivaiko, “Nonvolatile Organic Matter and Microorganisms in the Groundwaters of the Krapivin Water Reservoir Area of the Tom’ River (Kuznetsk Basin),” Geol. Geofiz., No. 4, 30–36 (1995).

  107. S. L. Shvartsev, N. M. Rasskazov, V. S. Kuskovskii, and L. F. Frizen, “Hydrogeochemical Setting of the Krapivin Water Reservoir Area of the Tom River (Kuznetsk Basin),” Geol. Geofiz., No. 8, 89–97 (1993).

  108. N. M. Rasskazov and O. G. Savichev, “Hydrogeochemical Conditions of Southeastern Western Siberia Exemplified by the Tom’ River Basin,” Geoekologiya, No. 4, 314–320 (1999).

  109. L. I. Inisheva and N. G. Inishev, “Elements of Water Balance and Hydrochemical Characteristic of Oligotrophic Bogs in the Southern Taiga Subzone of Western Siberia,” Vodn. Resur., No. 4, 410–417 (2001) [Water Res. 28, 371–377 (2001)]

  110. N. A. Ermashova, “Natural Hydrogeochemical Background of the Upper Hydrodynamic Zone of the Middle Ob Region as a Basis for Estimating Its Ecological State,” Obskoi Vestn., Nos. 3–4, 106–112 (1999).

  111. V. A. Zuev, O. V. Kartavykh, and S. L. Shvartsev, “Chemical Composition of Groundwaters from the Tomsk Water Supply System,” Obskoi Vestn., Nos. 3–4, 69–77 (1999).

  112. E. M. Dutova and D. S. Pokrovskii, “Chemical Composition and Quality of Groundwaters of Economic and Potable Use in Khakassia,” Obskoi Vestn., Nos. 3–4, 103–113 (1999).

  113. V. P. Parnachev, I. I. Vishnevetskii, N. A. Makarenko, et al., Water Resources of the Shirin Area of Khakassia (Tomsk. Gos. Univ., Tomsk, 1999) [in Russian].

    Google Scholar 

  114. V. P. Parnachev, D. Banks, and A. Y. Berezovsky, “Hydrochemical Evolution of Na-SO4-Cl Ground-Waters in a Cold, Semiarid Region of Southern Siberia,” Hydrogeol. J., No. 6, 546–560 (1999).

  115. S. L. Shvartsev, N. M. Rasskazov, T. N. Sidorenko, and M. A. Zdvizhkov, “Geochemistry of Natural Waters of the Bol’shoi Vasyugan Swamp,” in Bol’shoi Vasyugan Swamp: Modern State and Evolution (Inst. Optiki Atmosf., Tomsk, 2002), pp. 139–149 [in Russian].

    Google Scholar 

  116. P. Lahermo, “Chemical Geology of Ground and Surface Waters in Finish Lapland,” Bull. Comm. Geol. Finlande 242 (1970).

  117. P. Lahermo, “Hydrogeochemistry and Sensitivity Acidification of Stream Waters in Crystalline Areas of Northern Fennoscandia,” Environ. Geol. Water Sci. 18(1), 57–69 (1991).

    Article  Google Scholar 

  118. P. Lahermo, H. Sadstrom, and E. Malisa, “The Occurrence and Geochemistry of Fluorides in Natural Waters in Finland and East Africa with Reference to Their Geomedical Implications,” J. Geochem. Explor. 41, 65–79 (1991).

    Article  Google Scholar 

  119. P. Lahermo, J. Mannio, and T. Tarvainen, “The Hydrogeochemical Comparison of Streams and Lakes in Finland,” Appl. Geochem. 10(1), 45–64 (1995).

    Article  Google Scholar 

  120. M. Aström and A. Bjorklund, “Hydrogeochemistry of a Stream Draining Sulfide-Bearing Postglacial Sediments in Finland,” Water, Air, Soil Pollut., Nos. 3–4, 233–246 (1996).

  121. B. Backman and P. Lahermo, “Ground Water Monitoring in the Geological Survey of Finland,” in Hydrogeology and Land Management (Bratislava, 1999), pp. 329–333.

  122. O. Landström and C. G. Wener, “Neutron Activation Analysis of Water Applied to Hydrogeology,” Altieb. Atomen AE-204 (1965).

  123. T. P. Flaten, “Chemical Composition of Norwegian Drinking Water,” in Proceedings of Int. Symp. Geol. Map. Serv. Environ. Plann., Trondheim, Norway, 1986 (Trondheim, 1986), pp. 86–95.

  124. P. Jorgensen, A. O. Stuanes, and S. R. Ostmo, “Aqueous Geochemistry of the Romerike Area, Southern Norway,” Bull. Norw. Geol. Unders., No. 420, 47–71 (1991).

  125. M. Aastrup, J. Johnson, E. Bringmark, et al., “Occurrence and Transport of Mercury within a Small Catchment Area,” Water, Air, Soil Pollut. Spec. Vol. 56, 155–167 (1991).

    Article  Google Scholar 

  126. A. I. Klimas, “Trace Elements in the Fresh Groundwaters of Lithuania,” Geokhimiya, No. 3, 367–375 (1988).

  127. B. Adamzyk, K. Oleksynowa, A. Miechwka, and F. Zimny, “Chemizm wod grutowych w glebach Puszezy Niepolomieckiej,” Stud. Osr. Dok. Fizjogr. 12, 197–222 (1984).

    Google Scholar 

  128. H. Marszalek, “Groundwater Chemistry of Fractured Crystalline Rocks in Kamienna Watershed (Western Sudetes, SW Poland),” Acta Univ. Carolinae Geolog. 40, 233–246 (1996).

    Google Scholar 

  129. T. Scheytt, “Seasonal Variations in Ground-Water Chemistry near Lake Belau, Schleswig-Holstein, Northern Germany,” Hydrol. J. 5(2), 86–95 (1997).

    Google Scholar 

  130. A. Fruchart and M. Pinta, “Présence géochimique du lithium dans les eaux souterraines du bassin Parisienne,” Comp. Rend., Ser. D 281, 93–96 (1975).

    Google Scholar 

  131. M. Benedetti, “Géochimie de l’or: Mecanismes de transport et de dépôt,” Sci. Géol. Mét., No. 91 (1991).

  132. T. Pačes, “Chemical Characteristics and Equilibration in Natural Water-Felsic Rock-CO2 System,” Geochim. Cosmochim. Acta 36(2), 217–240 (1972).

    Article  Google Scholar 

  133. V. Zýka, “Prumérné chemické slozeni povrochovych a spodnich (sladkych) vod,” Sbor. Ved. TG 10, 69–90 (1972).

    Google Scholar 

  134. V. Zýka, “Stopové pravky (Pb,Cu, Zn, Cd, As) v pitný vodách SR,” Geol. Pruzk., 30(6), 162–167 (1988).

    Google Scholar 

  135. V. Zýka, “Kvalita studniénych vod ve v ý chodnièsti Stoedoèeského Kraje,” Geol. 31(4), 109–115 (1989).

    Google Scholar 

  136. S. Rapant, “Geochemia prirodnych vod kry talinika Nizkych Tatier,” Zap. Karpaty, Ser. Hydrogeol. A Inz. Geol. 12, 177–219 (1994).

    Google Scholar 

  137. S. Barnes and R. H. Wordon, “Understanding Groundwater Sources and Movement Using Water Chemistry and Traces in a Low Matrix Permeability Terrain: The Cretaceous (Chalk) Ulster White Limestone Formation, Northern Ireland,” Appl. Geochem. 13, 143–153 (1998).

    Article  Google Scholar 

  138. W. M. Edmunds and R. M. Kay, “Hydrogeochemistry as an Aid to Geological Interpretation: The Glen Roy Area, Scotland,” J. Geol. Soc. 153, 839–852 (1996).

    Article  Google Scholar 

  139. D. Banks, C. Reimann, and S. Skarphagen, “The Comparative Hydrogeochemistry of Two Granitic Island Aquifers: The Islands of Scilly, UK and the Hvaler Islands, Norway,” Sci. Total Environ. 209, 169–183 (1998).

    Article  Google Scholar 

  140. G. V. Bogomolov, G. N. Plotnikova, and E. A. Titova, Silica in Thermal and Cold Waters (Nauka i Tekhnika, Minsk, 1967) [in Russian].

    Google Scholar 

  141. L. G. Babii, Silica in the Waters from the Active Water Exchange Zones of Belorussia (Nauka i Tekhnika, Minsk, 1985) [in Russian].

    Google Scholar 

  142. V. A. Kovalev and A. L. Zhukhovitskaya, Phosphorous in Wetland Environments (Nauka i Tekhnika, Minsk, 1976) [in Russian].

    Google Scholar 

  143. S. G. Komrakova and K. I. Lukashev, Iodine in the Natural Waters and Soils of Belorussian Poozerie (Nauka i Tekhnika, Minsk, 1985) [in Russian].

    Google Scholar 

  144. A. V. Kudel’skii, Hydrogeology and Hydrogeochemistry of Iodine (Nauka i Tekhnika, Minsk, 1976) [in Russian].

    Google Scholar 

  145. U. Zivers, A. V. Kudel’skii, V. K. Lukashev, et al., “Trace Elements in the Surface and Ground Waters of Central and Southeastern Belorussia,” Vestsi Akad. Nauk Belarusi, Ser. Khim. Nauk, No. 2, 80–87 (1996).

  146. D. L. Parkhurst, S. Christenson, and G. N. Breit, “Groundwater Quality Assessment of the Central Oklahoma Aquifer, Oklahoma. Geochemical and Geohydrologic Investigation,” U.S. Geol. Surv. Water-Supply Pap., No. 2357 (1996).

  147. J. M. Thomas, A. H. Welch, and M. D. Dettinger, “Geochemistry and Isotope Hydrology of Representative Aquifers in the Great Basin Region of Nevada, Utah, and Adjacent States,” U.S. Geol. Surv. Prof. Pap., No. 1409 (1996).

  148. S. V. Panno, I. G. Krapac, C. P. Weibel, and J. D. Bade, “Groundwater Contamination in Karst Terrain of Southwestern Illinois,” Environ. Geol., No. 151 (1996).

  149. G. R. Davidson, R. L. Bassett, E. L. Hardin, and D L. Thompson, “Geochemical Evidence of Preferential Flow of Water through Fractures in Unsaturated Tuff, Apache Leap, Arizona,” Appl. Geochem. 13, 185–195 (1998).

    Article  Google Scholar 

  150. A. E. Fryar, W. F. I. Mullican, and S. A. Macko, “Groundwater Recharge and Chemical Evolution in the Southern High Plains of Texas, USA,” Hydrogeol. J., No. 6, 522–542 (2001).

  151. K. M. Davletgalieva, Geochemistry of the Southern Urals, Karatau, and Chu-Ili Ore Belts (Nauka, Alma-Ata, 1987) [in Russian].

    Google Scholar 

  152. M. S. Panin and V. G. Kozintsev, “Lead in the Groundwaters of the Middle Zone of Eastern Kazakhstan,” Gidrokhim. Mater. 104, 180–186 (1988).

    Google Scholar 

  153. V. N. Efimov and Z. S. Efimova, “Chemical Composition of Swamp Waters in the North European Part of the Country,” Pochvovedenie 11, 7–36 (1973).

    Google Scholar 

  154. P. V. Elpat’evskii, Geochemistry of Migration Flows in Natural and Natural-Anthropogenic Geosystems (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  155. V. P. Zverev, Hydrogeochemistry of the Sedimentary Process (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  156. I. L. Kalyuzhnyi and L. Ya. Levandovskaya, “Hydrochemical Regime and Chemical Composition of Waters from Oligotrophic Swamp Massifs,” in Problems of Wetland Hydrogeology (Leningrad, 1974), pp. 9–118 [in Russian].

  157. A. K. Lisitsyn, Hydrogeochemistry of Ore Formation (Nedra, Moscow, 1975) [in Russian].

    Google Scholar 

  158. G. A. Maksimovich, Chemical Geography of Land Waters (Geografizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  159. E. V. Posokhov, Formation of the Chemical Composition of Groundwaters (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  160. A. M. Chernyaev, L. E. Chernyaeva, and V. N. Babchenko, Hydrochemistry of Minor, Trace, and Scattered Elements (Southern Urals, Transurals, and Northern Kazakhstan) (Gidrometeoizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  161. V. A. Chudaeva, Migration of Chemical Elements in Waters of the Far East (Dal’nauka, Vladivostok, 2002) [in Russian].

    Google Scholar 

  162. V. I. Baranov, N. G. Morozova, T. G. Akimova, and A. V. Orlova, “Natural Radioelements in Surface and Soil-Ground Waters,” Geokhimiya, No. 3, 334–341 (1968).

  163. A. I. Germanov, “Uranium in Natural Waters,” in Main Features of Uranium Geochemistry (Moscow, 1963), pp. 290–336 [in Russian].

  164. I. I. Ginzburg and E. S. Kabanova, “Silica Content and Speciation in Natural Waters,” in Weathering Residues (Moscow, 1960), No. 3, pp. 313–342 [in Russian].

  165. V. V. Dobrovol’skii, Trace Element Geography. Global Dispersion (Mysl’, Moscow, 1983) [in Russian].

    Google Scholar 

  166. V. P. Zakutin and V. A. Shcheka, “Selenium in Low-Salinity Groundwaters,” Dokl. Akad. Nauk SSSR 289(2), 489–493 (1986).

    Google Scholar 

  167. I. S. Lomonosov, A. E. Gapon, S. N. Dmitriev, et al., “Efficiency of the Hydrogeochemical Method of Gold Prospecting,” Sov. Geol., No. 8, 86–93 (1986).

  168. B. F. Mitskevich, Yu. Ya. Sushchik, and A. I. Samchuk, Physicochemical Conditions of Exogenic Haloes and Beryllium Dispersion Fluxes (Naukova dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  169. P. V. Ostapenya, Ts. A. Kagan, and E. A. Gel’fer, “On the Problem of the Contents of Fluorine, Bromine, Iodine, and Copper in the Natural Waters of the Polesie Lowland,” Gidrokhim. Mater. 28, 76–82 (1959).

    Google Scholar 

  170. G. D. Supatashvili, T. A. Kikabidze, and G. A. Makharadze, “Study of Aluminum Distribution and Speciation in Natural Waters,” Tr. Tbil. Univ. 287, 71–79 (1989).

    Google Scholar 

  171. N. M. Shvartseva, “Antimony in the Groundwaters of the Kadamzhan Deposit,” Dokl. Akad. Nauk SSSR 207, 1220–1222 (1972).

    Google Scholar 

  172. V. M. Shvets, Organic Matter of Groundwaters (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  173. S. Bloch, Ch. D. Gay, and D. E. Dunbar, “Uranium, Chromium, and Selenium Concentrations in Water from Garberwellington Aquifer (Permian), Central Oklahoma,” Oklah. Geol. Notes 41(3), 72–80 (1981).

    Google Scholar 

  174. J. E. Brasaembl and R. G. Corbett, “Fluoride in Ground Water,” Soc. Sci. Med. D14(1), 55–61 (1980).

    Google Scholar 

  175. L. Capitani and F. Rodeghiero, “Fluoride Distribution in Spring Waters and Soils from Southalpine Crystalline Basement (Valtpompia, Northern Italy),” Mem. Sci. Geol. 42, 212–228 (1990).

    Google Scholar 

  176. M. Dall’Aglio, E. Ghiara, and W. Proetti, “New Data on the Hydrogeochemistry of Selenium,” Rend. Soc. Ital. Miner. Petrol., No. 2, 591–604 (1978).

  177. E. Driesher and J. Gelbrecht, “Phosphat im unterirdishen Wasser. 1. Mitteilung zum vorkommen von Phosphat im Grundwasser—eine Literturubersicht,” Acta Hydrophys. 32(4), 213–235 (1988).

    Google Scholar 

  178. E. Erriksson and V. Khunakasem, “The Chemistry of Ground Water,” in Ground Water Problems (Pergamon, Oxford, 1968), pp. 110–146.

    Google Scholar 

  179. M. J. Fishman and J. D. Hem, “Lead Content of Water,” Geol. Surv. Prof. Pap., No. 957, 35–41 (1976).

  180. M. Fleischer, “Fluoride Content of Ground Water in the Conterminous United States,” Geol. Soc. Am. Spec. Pap. 65 (1968).

  181. S. R. Gislason and S. Arnorsson, “Saturation State of Natural Waters in Iceland Relative to Primary and Secondary Minerals in Basalts,” Fluid Miner. Intarct. Spec. Publ. 2, 373–393 (1990).

    Google Scholar 

  182. R. Herrman and K. Pecher, “Behaviour of Aluminium Species within the Hydrological Cycle,” Aqua 41, 169–180 (1992).

    Google Scholar 

  183. Y. Kitano, R. Yoshioka, S. Okuda, and K. Okunishi, “Geochemical Study of Ground Waters in the Matsushiro Area, Pt I,” Bull. Disaster Prev. Res. Inst., No. 2, 47–71 (1967).

  184. D. P. H. Laxen, W. Davidson, and C. Woof, “Manganese Chemistry in Rivers and Streams,” Geochim. Cosmochim. Acta 48, 2107–2111 (1984).

    Article  Google Scholar 

  185. Trace Elements in Natural Waters, Ed. by B. Salbu and E. Steinnes (CRS Press, Boca Raton, 1995).

    Google Scholar 

  186. R. F. Spalding, A. D. Druliner, L. S. Whiteside, and W. Struemler, “Uranium Geochemistry in Groundwater from Tertiary Sediments,” Geochim. Cosmochim. Acta 48(12), 2679–2692 (1984).

    Article  Google Scholar 

  187. G. Stamatis, “Chemismus der Quellwasser der Halbinsel Athos (Aghion Oros, Nord-Griechenland),” Z. Deutsch. Geol. Ges. 142(2), 283–299 (1996).

    Google Scholar 

  188. C. Reimann and P. de Caritat, Chemical Elements in the Environment (Springer, Berlin, 1998).

    Google Scholar 

  189. S. L. Shvartsev, “Chemical Element Clarkes of Hypergenic Zone” in Development of Deep Aquifers and Problems of Drinking Water Treatment (Vilnius, 1998), pp. 73–74.

  190. J. Diliunas and A. Jurevicius, Iron in Fresh Groundwater of Lithuania (Vilnius, 1998).

  191. N. P. Akhmet’eva and E. E. Lapina, “Variations in the Chemical Composition of Groundwater of the Ivan’kovskoe Reservoir Protection Zone,” Vodn. Resur. No. 2, 169–173 [Water Resour. 24, 148–152 (1997)].

  192. J. Rozkowski, “The Reasons of the Upper Jurassic Aquifer Potable Water Quality Worsening in the Cracow-Czestochowa Upland (Poland),” in Development of Deep Aquifers and Problems of Drinking Water Treatment (Vilnius, 1998), pp. 66–69.

  193. R. S. Harmon, W. B. White, J. J. Drake, and J. W. Hess, “Regional Hydrochemistry of North American Carbonate Terrains,” Water Resour. Res. 11(6), 963–967 (1975).

    Article  Google Scholar 

  194. B. A. Vorotnikov, Dispersion Water Flows of Sulfide Mineralization of the Altai and Their Prospecting Significance (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  195. N. A. Roslyakov, V. S. Kuskovskii, G. V. Nesterenko, et al., Katun’: Mercury Ecogeochemistry (Novosibirsk, 1992) [in Russian].

  196. S. L. Shvartsev, A. A. Lukin, V. S. Kuskovskii, et al., “Geochemical Conditions of Mercury Migration in the Groundwaters of the Project Area of the Katun’ Hydroelectric Station,” Vodn. Resur. 22, 50–59 (1995).

    Google Scholar 

  197. Yu. G. Kopylova, E. I. Bol’shakov, A. I. Nevol’ko, et al., “Experience in the Application of the Hydrogeochemical Method during Mineral Prospecting in the Northwestern Salair,” in Hydrogeochemical Prospecting of Mineral Deposits (Nauka, Novosibirsk, 1990) [in Russian], pp. 55–77.

    Google Scholar 

  198. S. L. Shvartsev and O. G. Savichev, “Basic Sites of Hydrogeochemical Observations—A New Methodological Basis for the Solution of Aqueous Ecological Problems: Evidence from the Upper and Middle Ob Basin,” Obskoi Vestn., Nos. 3–4, 27–32 (1999).

  199. Yu. G. Kopylova, I. V. Smetanina, and V. M. Maruleva, “Ecological State of the Natural Waters of the Kommunar-Balakhchin Ore Zone,” Obskoi Vestn., Nos. 3–4, 42–47 (1999).

  200. S. L. Shvartsev, Yu. S. Kolmakov, and O. G. Savichev, “Basic Sites of Hydrogeochemical Observations in the Upper Ob Basin in 1998,” Obskoi Vestn., No. 1, 2–5 (2001).

  201. S. L. Shvartsev and E. M. Dutova, “Hydrochemistry and Mobilization of Gold in the Hypergenesis Zone (Kuznetsk Alatau, Russia),” Geol. Rudn. Mestorozhd., No. 3, 252–261 (2001) [Geol. Ore Dep. 43, 224–233 (2001)].

  202. I. H. Feth, C. E. Roberson, and W. L. Plozer, “Sources of Mineral Constituents in Water from Granitic Rocks, Sierra Nevada,” U.S. Geol. Surv. Water-Supply Pap., No. 1534 (1964).

  203. I. P. Miller, “Solutes in Small Streams Draining Single Rock Types, Sangre de Christo Range, New Mexico,” U.S. Geol. Water-Supply Pap., No. 1535 (1961).

  204. H. E. Legrand, “Chemical Character of Water in the Igneous and Metamorphic Rocks of North Carolina,” Econ. Geol. 53, 178–189 (1958).

    Google Scholar 

  205. D. Banks, B. Frengstad, A. K. Midtgard, et al., “The Chemistry of Norwegian Groundwaters: I. The Distribution of Radon, Major and Minor Elements in 1604 Crystalline Bedrock Groundwaters,” Sci. Total Environ. 222, 71–91 (1998).

    Article  Google Scholar 

  206. D. Banks, G. Hall, C. Reimann, and U. Siewers, “Distribution of Rare Elements in Crystalline Bedrock Groundwaters: Oslo and Bergen Regions, Norway” Appl. Geochem. 14, 27–39 (1999).

    Article  Google Scholar 

  207. B. Frendstad, A. K. M. Skrede, D. Banks, et al., “The Chemistry of Norwegian Groundwaters: III. The Distribution of Trace Elements in 476 Crystalline Bedrock Groundwaters, as Analysed by ICP-MS Technique,” Sci. Total Environ. 246, 21–40 (2000).

    Article  Google Scholar 

  208. G. A. Vostroknutov, “On the Geochemistry of Natural Waters from the Greenstone Zones of the Middle Urals,” Razved. Okhr. Nedr, No. 10, 41–48 (1962).

  209. Yu. Ya. Sushchik and V. I. Marus, “Geochemical Features of Natural Waters from the Ukrainian Carpathians,” in Geological Problems of Sedimentary Sequences of Ukraine (Naukova Dumka, Kiev, 1972), pp. 180–189 [in Russian].

    Google Scholar 

  210. G. A. Goleva, Hydrogeochemical Prospecting of Hidden Mineralization (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  211. S. R. Krainov, Geochemistry of Trace Elements in Groundwaters (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  212. V. A. Kiryukhin, N. B. Nikitina, and S. N. Sudarikov, Hydrogeochemistry of Fold Areas (Nedra, Leningrad, 1989) [in Russian].

    Google Scholar 

  213. B. A. Kolotov, Hydrogeochemistry of Ore Deposits (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  214. A. W. Gosling, E. A. Jenne, and T. T. Chao, “Gold Content of Natural Waters in Colorado,” Econ. Geol. 66, 309–313 (1971).

    Article  Google Scholar 

  215. B. G. Katz, O. P. Bricker, and M. M. Kennady, “Geochemical Mass-Balance Relationships for Selected Ions in Precipitation and Stream Water, Catoctin Mountains,” Am. J. Sci. 285, 931–962 (1985).

    Google Scholar 

  216. J. M. Reid, D. A. Macleod, and M. S. Cresser, “The Assessment of Chemical Weathering Rates within an Upland Catchment in North-East Scotland,” Earth Surf. Process. Landforms, No. 5, 447–457 (1981).

  217. Ch. Walter, “Chemismus von Bodensickerwassern,” Hydroch. Hydrogeol., No. 5, 118–138 (1983).

  218. V. M. Stepanov, “On the Problem of the Formation of the Chemical Composition of Groundwaters in Transbaikalia,” in Problems of the Hydrogeology and Engineering Geology of Eastern Siberia (Irkutsk, 1974), pp. 37–42 [in Russian].

  219. V. A. Kovda, Principles of Soil Sciences (Nauka, Moscow, 1973), Vols. 1, 2 [in Russian].

    Google Scholar 

  220. N. I. Bazilevich, Geochemistry of Soils of Soda Salinization (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  221. R. J. Ebens and H. T. Shacklette, “Geochemistry of Some Rocks, Mine Spoils, Stream Sediments, Soils, Plants, and Waters in the Western Energy Region of the Conterminous United States,” Geol. Surv. Prof. Pap., No. 1237 (1982).

  222. R. S. Fisher and W. F. Mullican, “Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA,” Hydrogeol. J. 5(2), 4–16 (1997).

    Article  Google Scholar 

  223. M. G. Atwia, A. A. Hassan, and Sh. A. Ibrahim, “Hydrogeology, Log Analysis and Hydrogeochemistry of Unconsolidated Aquifers South of El-Sadat City, Egypt,” Hydrogeology, No. 12, 27–38 (1997).

  224. G. Calderoni, U. Masi, and V. Petrone, “Chemical Features of Spring Waters of the East Africa Rift: A Reconnaissance Study,” Geol. Romana, 291, 163–169 (1993).

    Google Scholar 

  225. J. M. M. Arthur, J. V. Turner, W. B. Lyons, et al., “Hydrogeochemistry on the Yilgarn Block, Western Australia: Ferrolysis and Mineralisation in Acidic Brines,” Geochim. Cosmochim. Acta 55(5), 1273–1288 (1991).

    Article  Google Scholar 

  226. P. Briot, “L’environnement hydrogéochimique du calcrete uranifére de Yeelirie (Australie occidentale),” Miner. Deposita 18, 191–206 (1983).

    Article  Google Scholar 

  227. S. C. Gupta, M. P. Sanganeria, and P. Rai, “Contents and Distribution Patterns of Trace Elements in Groundwater of Jodhpur District in Western Ragasthan,” Ann. Arid Zone, 29(4), 265–269 (1990).

    Google Scholar 

  228. N. J. Pawar, “Geochemistry of Carbonate Precipitation from the Ground Waters in Basaltic Aquifers: An Equilibrium Thermodynamic Approach,” J. Geol. Soc. India 41(2), 119–131 (1993).

    Google Scholar 

  229. E. Salameh, M. Alawi, M. Batarseh, and A. Juries, “Determination of Trihalomethanes and the Ionic Composition of Groundwater at Amman City, Jordan,” Hydrogeol. J. 10(2), 332–339 (2002).

    Article  Google Scholar 

  230. O. F. Vasil’ev, S. A. Sukhenko, A. A. Atavin, et al., “Ecological Aspects of the Project of the Katun’ Hydroelectric Station Related to the Presence of Hg in the Gornyi Altai Environment,” Vodn. Resur., No. 6, 107–123 (1992).

  231. Iodine and the Health of the Siberian Population, Ed. by V. A. Trufakin, (Nauka, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  232. G. I. Gavich, I. S. Zektser, V. S. Kovalevskii, et al., Principles of Hydrogeology. Hydrodynamics (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  233. D. A. Livingstone, “Chemical Composition of Rivers and Lakes,” Geol. Surv. Prof. Pap., No. 440-G (1963).

  234. K. K. Turekian, “The Oceans, Streams and Atmosphere,” in Handbook of Geochemistry, ed. by K. H. Wedepohl (Springer, Berlin and New York, 1969), Vol. 1, pp. 297–323.

    Google Scholar 

  235. J. M. Martin and M. Meybeck, “Elemental Mass-Balance of Material Carried by World Rivers,” Marin. Chem. 7, 173–206 (1979).

    Article  Google Scholar 

  236. M. Meybeck, “Concentrations des eaux fluviales en elements majeurs et apportes en solution aux oceans,” Rev. Geol. Dyn. Géogr. Phys. 21(3), 215–246 (1979).

    Google Scholar 

  237. M. Meybeck, “Carbon, Nitrogen and Phosphorus Transported by World Rivers,” Am. J. Sci. 282, 401–450 (1982).

    Google Scholar 

  238. E. E. Belyakova, A. A. Reznikov, L. E. Kramarenko, et al., Hydrochemical Method of Prospecting of Ore Deposits (Gosgeoltekhizdat, Moscow, 1962) [in Russian].

    Google Scholar 

  239. A. I. Perel’man, Geochemistry of the Biosphere (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  240. A. P. Vinogradov, “Average Content of Chemical Elements in the Major Types of Igneous Rocks of the Earth’s Crust,” Geokhimiya, No. 7, 555–571 (1962).

  241. R. M. Garrels and C. L. Christ, Solutions, Minerals, and Equilibria (Harper and Row, New York, 1965).

    Google Scholar 

  242. A. S. Reeve and E. S. Perry, “Carbonate Geochemistry and the Concentrations of Aqueous Mg2+, Sr2+ and Ca2+: Western North Coast of the Yucatan, Mexico,” Chem. Geol. 112(1–2), 105–117 (1994).

    Article  Google Scholar 

  243. W. D. Keller, The Principles of Chemical Weathering (Lucas Broth., Missouri, 1957).

    Google Scholar 

  244. S. L. Shvartsev, “Interaction of Water with Aluminosilicate Rocks: A Review,” Geol. Geofiz., No. 12, 16–50 (1991).

  245. S. R. Gislason and H. R. Eugster, “Meteoric Water-Basalt Interaction. II. A Field Study in NE Iceland,” Geochim. Cosmochim. Acta 51(10), 2841–2855 (1987).

    Article  Google Scholar 

  246. N. A. Ogil’vi, Physical and Geological Fields in Hydrogeology (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  247. R. M. Garrels and F. T. Mackenzie, Evolution of Sedimentary Rocks (Norton, New York, 1971).

    Google Scholar 

  248. A. I. Perel’man, Geochemistry of Epigenetic Processes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  249. J. J. Drake and T. M. L. Wigley, “The Effect of Climate on the Chemistry of Carbonate Ground Water,” Water Resour. Res. 11(6), 958–962 (1975).

    Article  Google Scholar 

  250. I. N. Skrynnikova, “Soil Solutions of the Southern Part of the Forest Zone and Their Role in the Recent Processes of Soil Formation,” in Modern Processes in the Forest Zone of the European USSR (Akad. Nauk SSSR, Moscow, 1959), pp. 50–169 [in Russian].

    Google Scholar 

  251. Rates of Chemical Weathering of Rocks and Minerals, Ed. by S. M. Colman and D. P. Dethier (Academic Press, Orlando, 1986).

    Google Scholar 

  252. Chemical Weathering Rates of Silicate Minerals, Ed. by A. F. White and S. L. Brantley, Rev. Mineral. 31 (Book Crafters, Michigan, 1995).

    Google Scholar 

  253. M. A. Glazovskaya, World Soils. Main Families and Types of Soils (Mosk. Gos. Univ., Moscow, 1972) [in Russian].

    Google Scholar 

  254. R. Maignien, Le cuirassement des sole en Guinée (Strassbourg, 1958).

  255. N. P. Remezov, “On the Relationships between Biological Accumulation and Eluvial Processes beneath a Forest Canopy,” Pochvovedenie, No. 6, 1–12 (1958).

  256. F. A. Makarenko and V. V. Zverev, “Underground Chemical Flow in the USSR Territory,” Litol. Polezn. Iskop., No. 6, 30–37 (1970).

  257. V. P. Zverev, V. I. Kononov, V. A. Il’in, et al., Migration of Chemical Elements in the Groundwaters of the USSR (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  258. E. G. Kukovskii, Transformations of Phyllosilicates (Naukova Dumka, Kiev, 1973) [in Russian].

    Google Scholar 

  259. C. D. Ollier, Weathering (Oliver and Boyd, Edinburg, 1969).

    Google Scholar 

  260. G. Millot, Geologie des argiles (Masson, Paris, 1964; Nedra, Leningrad, 1968).

    Google Scholar 

  261. C. W. Correns, “The Experimental Chemical Weathering of Silicates,” Clay Min. Bull., No. 4, 249–265 (1971).

  262. V. I. Fin’ko, S. S. Chekin, and N. D. Samotoin, “Kaolinization of Rock-Forming Silicates in Weathering Residues,” in Problems of the Theory of the Formation of Weathering Residues and Exogenic Deposits (Nauka, Moscow, 1980), pp. 196–201 [in Russian].

    Google Scholar 

  263. V. A. Alekseev, Kinetics and Mechanisms of Feldspar Interaction with Aqueous Solutions (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  264. O. A. Alekin and L. V. Brazhnikova, Runoff of Dissolved Matters from the USSR Territory (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  265. N. M. Strakhov, Principles of the Theory of Lithogenesis (Akad. Nauk SSSR, Moscow, 1960), Vol. 1 [in Russian].

    Google Scholar 

  266. K. I. Lukashev, Zoned Geochemical Types of Weathering Residues in the USSR Territory (Belorus. Gos. Univ., Minsk, 1956) [in Russian].

    Google Scholar 

  267. B. B. Polynov, Selected Works (Akad. Nauk SSSR, Moscow, 1956) [in Russian].

    Google Scholar 

  268. G. Pedro, “Contribution à l’étude expérimentale de l’altération géochimique des roches cristallines,” Ann. Agron. 15(12), 85–191 (1964).

    Google Scholar 

  269. A. S. Kashik and I. K. Karpov, Physicochemical Theory of the Formation of Zoning in Weathering Residues (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  270. A. S. Kashik, Formation of Mineral Zoning in Weathering Residues (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  271. I. I. Ginzburg, “Main Problems in the Formation of Weathering Residues and Their Significance for the Prospecting of Mineral Deposits,” Geol. Rudn. Mestorozhd., No. 5, 21–36 (1963).

  272. M. L. Jackson, S. A. Tyler, A. L. Willis, et al., “Weathering Sequence of Clay Size Minerals in Soils and Sediments. Fundamental Generalization,” J. Phys. Colloid Chem., 52(8), 1237–1260 (1948).

    Google Scholar 

  273. A. P. Nikitina, I. V. Vitovskaya, and K. K. Nikitin, Mineralogical and Geochemical Tendencies in the Formation of Profiles and Mineral Resources of Weathering Residues (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  274. I. D. Sedletskii, “Genesis of Montmorillonite-Group Minerals in Soil Colloids,” Dokl. Akad. Nauk SSSR 17(7), 371–373 (1937).

    Google Scholar 

  275. H. Paquet, Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens tropicauxásaisons contrastées (Strasbourg, 1970).

  276. J. Déjou, J. Gyuot, and M. Robert, Evolution superficielles des roches cristallines et cristallophilliennes dans les regions temperées (INRA, Paris, 1977).

    Google Scholar 

  277. Y. Tardy, Pétrologie des latérites et des sols tropicaux (Masson, Paris, 1993).

    Google Scholar 

  278. B. Fritz, Étude thermodynamique et simulation des reactions entre mineraux et solutions. application ála géochimie des alterations et des eaux continentals (Strasbourg, 1975).

  279. S. L. Shvartsev, “Laterites of Guinea and Geochemical Conditions of Their Formation,” Kora Vyvetrivaniya, No. 15, 51–70 (1976).

  280. A. A. Afifi, O. P. Bricker, and J. C. Chemerys, “Experimental Chemical Weathering of Various Bedrock Types at Different pH-Values. 1. Sandstone and Granite,” Chem. Geol. 49(1–3), 87–113 (1985).

    Article  Google Scholar 

  281. H. May, “The Hydrolysis of Aluminum: Conflicting Models and the Interpretation of Aluminum Geochemistry,” in Proceedings of 7th Symposium on Water-Rock Interaction, Rotterdam (Brookfield, Rotterdam, 1992), Vol. 1, pp. 13–21.

    Google Scholar 

  282. H. W. Nesbitt and R. E. Wilson, “Recent Chemical Weathering of Basalts,” Am. J. Sci. 292(10), 740–777 (1992).

    Google Scholar 

  283. B. A. Bogatyrev, L. A. Matveeva, V. V. Zhukov, and L. O. Magazina, “Kaolinite and Halloysite Synthesis in the Gibbsite-Silica Solution System under Normal Conditions,” Geokhimiya, No. 8, 851–862 (1997) [Geochem. Int. 35, 747–757 (1997)].

  284. M. I. L’vovich, World’s Water Resources and Their Future (Mysl’, Moscow, 1974) [in Russian].

    Google Scholar 

  285. L. Barshad, “The Effect of a Variation in Precipitation on the Nature of Clay Mineral Formation in Soils from Acid and Basic Igneous Rocks,” in Proceeding of International Clay Conference, Jerusalem, Israel (Jerusalem, 1996), Vol. 1, 167–173.

  286. P. Warneck, Chemistry of the Natural Atmosphere (Academic, New York, 1988).

    Google Scholar 

  287. R. A. Duce, I. W. Winchester, and l. van Nah, “Iodine, Bromine and Chorine in the Hawaiian Marine Atmosphere,” J. Geophys. Res. 70, 1775–1799 (1965).

    Article  Google Scholar 

  288. A. A. Kolodyazhnaya, Regime of the Chemical Composition of Atmospheric Precipitation and Its Metamorphism in the Aeration Zone (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  289. V. M. Drozdova, O. P. Petrenchuk, E. S. Selezneva, and F. P. Svistov, Chemical Composition of Precipitation in the European Part of the USSR (Gidrometeoizdat, Leningrad, 1964) [in Russian].

    Google Scholar 

  290. R. Caboi, A. Cristini, and F. Frau, “Metal Concentrations in Rainwater (Sardinia, Western Mediterranean Sea)” in Water-Rock Interaction (Balkema, Rotterdam, 1995), pp. 337–340.

    Google Scholar 

  291. D. Carroll, “Rainwater as a Chemical Agent of Geologic Processes,” Rev. Water-Supply Pap., No. 1535-G (1962).

  292. G. Tuvaanzhav and N. A. Marinov, “Chemical Composition of the Atmospheric Precipitation of Ulan Bator,” Vodn. Resur., No. 6, 667–673 (1994).

  293. L. I. Belyaev and E. I. Ovsyanyi, “Study of Trace Elements in the Atmospheric Precipitation of a Coastal Region with Application to Some Problems of Chemical Oceanography,” Gidrokh. Mater. 51, 3–12 (1969).

    Google Scholar 

  294. K. Sugawara, “Chemical Composition of Rain in Japan,” J. Earth Sci. Nagoya Univ., Nos. 1–2 (1967).

  295. M. Herron, Ch. C. Langway, H. V. Weiss, and J. H. Gradin, “Atmospheric Trace Metals and Sulfate in the Greenland Ice Sheet,” Geochim. Cosmochim. Acta 41(7), 915–920 (1977).

    Article  Google Scholar 

  296. B. A. Mirtov, Gas Composition of the Earth’s Atmosphere and Methods of Its Analysis (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  297. E. Gorham, “On the Acidity and Salinity of Rain,” Geochim. Cosmochim. Acta 7, 231–239 (1955).

    Article  Google Scholar 

  298. V. V. Ponomareva and N. S. Sotnikova, “Systematics of Element Migration and Accumulation in Podzolic Soils,” in Biochemical Processes in the Podzolic Soils (Nauka, Leningrad, 1972), pp. 6–55 [in Russian].

    Google Scholar 

  299. B. B. Polynov, “On the Geological Role of Organisms,” Vopr. Geogr. 33, 45–64 (1953).

    Google Scholar 

  300. S. L. Shvartsev, “Ore-Generating Processes in the Evolution of the Water-Rock System,” Geol. Rudn. Mestorozhd. 36(3), 261–270 (1994).

    Google Scholar 

  301. I. N. Antipov-Karataev, “Problems of the Origin of Geographical Distribution of Solonetz in the USSR,” in Solonetz Melioration in the USSR (Akad. Nauk SSSR, Moscow, 1953) [in Russian].

    Google Scholar 

  302. E. V. Posokhov, Origin of Soda Waters in Nature (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  303. Yu. V. Batalin, B. S. Kasimov, and E. F. Stankevich, Natural Soda Deposits and Conditions of Their Formation (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  304. V. G. Popov, R. F. Abdrakhmanov, and I. N. Tugushi, Exchange-Absorption Processes in the Underground Atmosphere (Ufa, 1992) [in Russian].

  305. R. Blake, “The Origin of High Sodium Bicarbonate Waters in the Otway Basin Victoria, Australia,” in Proceedings of 6th Symposium on Water-Rock Interaction, Rotterdam, 1989 (Brookfield, Rotterdam, 1989), pp. 83–85.

    Google Scholar 

  306. W. P. Kelley, Alkali Soils, Their Formation, Properties and Reclamation (Reinhold, New York, 1951).

    Google Scholar 

  307. A. Al-Droubi, Géochemie des sels et des solutions concontrées par evaporations. Modéle thermodynamique de simulation. Applications aux sols salés du Tchad (Strasbourg, 1976).

  308. V. A. Kazantsev, Problems of Pedohalogenesis (Nauka, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  309. R. S. Kononova, “Cryogenic Metamorphism of Subpermafrost Waters from the Eastern Siberian Artesian Area,” Sov. Geol., No. 3, 106–115 (1974).

  310. I. A. Tyutyunov, Processes of Alteration and Transformation of Soils and Rocks at Negative Temperatures (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  311. S. L. Shvartsev, “Geochemical Activity of Permafrost,” Priroda, No. 7, 66–73 (1975).

  312. S. L. Shvartsev, “On the Relationships between the Compositions of Groundwaters and Rocks,” Geol. Geofiz., No. 8, 46–54 (1993).

  313. F. A. Letnikov, Synergetics of Geological Systems (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  314. A. E. Kontorovich, “General Theory of Naphthidogenesis. Main Concepts and Ways of Their Construction,” in Theoretical and Regional Problems of Oil and Gas Geology (Nauka, Novosibirsk, 1991), pp. 29–44 [in Russian].

    Google Scholar 

  315. A. S. Shcherbakov, Self-Organization of Matter in Inorganic Nature: Philosophical Aspects of Synergetics (Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  316. S. L. Shvartsev, “On the Problem of Self-Organization in the Water-Rock Geological System,” Geol. Geofiz., No. 4, 22–29 (1995).

  317. S. L. Shvartsev, “Water-Rock Geological System,” Vest. Ross. Akad. Nauk, No. 6, 518–524 (1997).

  318. S. L. Shvartsev, “The Water-Rock System Synergy,” Earth Sci. Front., No. 1, 36–46 (2001).

  319. I. Prigogine and I. Stengers, Order Out of Chaos. Man’s New Dialogue with Nature (Heineman, London, 1984).

    Google Scholar 

  320. V. S. Golubev, “Coupled Processes and Evolution,” in Idea of Evolution in Geology: Compositional and Structural Aspects (Nauka, Novosibirsk, 1990), pp. 5–13 [in Russian].

    Google Scholar 

  321. O. V. Esterle, “Evolution of Inorganic and Living Matter of the Earth from the Viewpoint of Statistical Chemistry,” in Idea of Evolution in Geology: Compositional and Structural Aspects (Nauka, Novosibirsk, 1990), pp. 5–13 [in Russian].

    Google Scholar 

  322. A. L. Yanshin, “Origin of the Problem of the Evolution of Geological Processes,” in Evolution of Geological Processes in the Earth’s History (Nauka, Moscow, 1993), pp. 9–20 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Shvartsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvartsev, S.L. Geochemistry of fresh groundwater in the main landscape zones of the Earth. Geochem. Int. 46, 1285–1398 (2008). https://doi.org/10.1134/S0016702908130016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702908130016

Keywords

Navigation