Skip to main content
Log in

Systematics of rare earth elements, Th, Hf, Sc, Co, Cr, and Ni in the vendian pelitic rocks of the Serebryanka and Sylvitsa groups from the western slope of the Central Urals: A tool for monitoring provenance composition

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper presents the first data on the systematics of rare earth elements (REE), Th, Hf, Sc, Co, Cr, and Ni and the Nd model ages of fine-grained aluminosilicate clastic rocks of the Serebryanka and Sylvitsa groups of the Vendian from the Kvarkushsko-Kamennogorskii meganticlinorium (western slope of the Central Urals). It was found that the REE distribution patterns of shales and mudstones of the two groups are similar to those of the majority of post-Archean fine-grained terrigenous complexes. The presence of pelitic rocks with GdN/YbN > 2.0 in a number of Vendian levels suggests a contribution from an Archean component in the composition of the fine aluminosilicate clastic material. This is probably also indicated by the high degree of heavy REE depletion in some mudstone samples. The REE systematics allow us to suppose a heterogeneity of Vendian paleocatchments and variations in their composition with time. The eroded areas had the most mature composition in the beginning of Serebryanka. Starting from the second half of Serebryanka, mafic and/or ultramafic rocks started playing a significant role in the provenances. The rocks of the lower portion of the Serebryanka Group show TNd(DM) values of about 2.0 Ga, whereas the upper part of the section is dominated by rocks with TNd(DM) ≅ 1.77–1.73 Ga. This indicates that during the Taninskaya and Koiva time periods, fine aluminosilicate clastic material was supplied into the sedimentation region mainly from the west, from the eastern areas of the east European platform, where Archean and Early Proterozoic crystalline complexes dominated. A decrease in model ages was related to the addition of juvenile mantle material to the mature continental crust. Such processes can be illustrated by the mafic-ultramafic complexes (Dvoretskii, Shpalorezovskii, Vil’vinskii, etc.) located in the field of Vendian sedimentary sequences, which show TNd(DM) values from 824 to 707 Ma. It was concluded that the history of the formation of an Early Vendian rift in the western slope of the central Urals included only one rifting event (rather than three, as was previously supposed), which was supported by a variety of recent geological and isotope geochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Migdisov, “Titanium and Aluminum Relationships in Sedimentary Rocks,” Geokhimiya, No. 2, 149–163 (1960).

  2. A. B. Ronov, Yu. A. Balashov, Yu. P. Girin, et al., “Regularities in the Distribution of Rare Earth Elements in the Sedimentary Shell and the Earth’s Crust,” Geokhimiya, No. 12, 1483–1513 (1972).

  3. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  4. V. N. Kholodov and R. I. Nedumov, “Geochemical Criteria of the Occurrence of Hydrogen Sulfide Contamination in Ancient Basins,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 12, 74–82 (1991).

  5. B. G. Pokrovskii, E. F. Letnikova, and S. G. Samygin, “Isotopic Stratigraphy of the Bokson Group, Vendian-Cambrian of the Sayan Mountains,” Stratigr. Geol. Korrelyatsiya 7(3), 23–41 (1999) [Stratigr. Geol. Correlation 7, 229–246 (1999)].

    Google Scholar 

  6. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  7. Interpretation of Geochemical Data, Ed. by E. V. Sklyarov (Intermet Inzhiniring, Moscow, 2001) [in Russian].

    Google Scholar 

  8. A. V. Maslov, Yu. R. Ronkin, M. T. Krupenin, and E. Z. Gareev, “Riphean Sedimentation Basins of the Southern Urals (Paleogeography, Paleoclimate, Provenances, and Paleosalinity),” in Sedimentary Basins of the Urals and Adjacent Regions: Regularities in Their Structure and Metallogeny (Inst. Geol. Geokhim. URO RAS, Yekaterinburg, 2000), pp. 28–52 [in Russian].

    Google Scholar 

  9. A. V. Maslov, Yu. L. Ronkin, M. T. Krupenin, et al., “Provenances of Riphean Sedimentary Basins at the Russian Platform-Southern Urals Junction: Evidence from Petrographic, Petrochemical, and Geochemical Data,” Dokl. Akad. Nauk 389, 219–222 (2003) [Dokl. Earth Sci. 389, 180–183 (2003)].

    Google Scholar 

  10. V. N. Podkovyrov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGGD RAN, St. Petersburg, 2001).

    Google Scholar 

  11. V. N. Podkovyrov, V. P. Kovach, and L. N. Kotova, “Mudrocks from the Siberian Hypostratotype of the Riphean and Vendian: Chemistry, Sm-Nd Isotope Systematics of Sources, and Formation Stages,” Litol. Polezn. Iskop., No. 4, 397–418 (2002) [Lithol. Mineral. Resour. 37, 344–363 (2002)].

  12. Yu. O. Gavrilov, E. V. Shchepetova, E. Yu. Baraboshkin, and E. A. Shcherbinina, “The Early Cretaceous Anoxic Basin of the Russian Plate: Sedimentology and Geochemistry,” Litol. Polezn. Iskop., No. 4, 359–380 (2002) [Lithol. Mineral. Resour. 37, 310–329 (2002)].

  13. A. B. Kotov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGGD RAN, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  14. R. L. Cullers, S. Chaudhuri, B. Arnold, et al., “Rare Earth Distributions in Clay Minerals and in the Clay-Sized Fractions of the Lower Permian Havensville and Eskridge Shales of Kansas and Oklahoma,” Geochim. Cosmochim. Acta 39, 1691–1703 (1975).

    Article  Google Scholar 

  15. H. W. Nesbitt and G. M. Young, “Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  16. D. J. Wronkiewicz and K. C. Condie, “Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance,” Geochim. Cosmochim. Acta 51, 2401–2416 (1987).

    Article  Google Scholar 

  17. L. Harnois, “The CIW Index: A New Chemical Index of Weathering,” Sediment. Geol. 55, 319–322 (1988).

    Article  Google Scholar 

  18. S. M. McLennan, “Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Ed. by B. R. Lipin and G. A. McKay, Rev. Mineral. 21, 169–200 (1989).

  19. R. V. Tyson and T. H. Pearson, “Modern and Ancient Continental Shelf Anoxia: An Overview,” in Modern and Ancient Continental Shelf Anoxia, Ed. by R. V. Tyson and T. H. Pearson, Geol. Soc. Spec. Publ. (London) 58, 1–24 (1991).

  20. K. C. Condie, “Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  21. K. C. Condie, Plate Tectonics and Crustal Evolution, (Butterworth-Heinemann, Oxford, 1997).

    Google Scholar 

  22. B. Jones and D. A. C. Manning, “Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones,” Chem. Geol. 111, 111–129 (1994).

    Article  Google Scholar 

  23. R. Cox, D. R. Lowe, and R. L. Cullers, “The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in Southwestern United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).

    Article  Google Scholar 

  24. S. R. Taylor and S. M. McLennan, “The Chemical Evolution of the Continental Crust,” Rev. Geophys. 33, 241–265 (1995).

    Article  Google Scholar 

  25. G. Mongelli, R. L. Cullers, and S. Muelheisen, “Geochemistry of Late Cretaceous-Oligocenic Shales from the Varicolori Formation, Southern Apennines, Italy: Implications for Mineralogical, Grain-Size Control and Provenance,” Eur. J. Mineral. 8, 733–754 (1996).

    Google Scholar 

  26. C. M. Fedo, G. M. Young, and H. W. Nesbitt, “Paleoclimatic Control on the Composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A Greenhouse to Icehouse Transition,” Precambrian Res. 86, 201–223 (1997).

    Article  Google Scholar 

  27. S. Hassan, H. Ishiga, B. P. Roser, et al., “Geochemistry of Permian-Triassic Shales in the Salt Range, Pakistan: Implications for Provenance and Tectonism at the Gondwana Margin,” Chem. Geol. 158, 293–314 (1999).

    Article  Google Scholar 

  28. B. Bauluz, M. J. Mayayo, C. Fernandez-Nieto, and J. M. G. Lopez, “Geochemistry of Precambrian and Paleozoic Siliciclastic Rocks from the Iberian Range (NE Spain): Implications for Source-Area Weathering, Sorting, Provenance, and Tectonic Setting,” Chem. Geol. 168, 135–150 (2000).

    Article  Google Scholar 

  29. M. I. Bhat and S. K. Ghosh, “Geochemistry of the 2.51 Ga Old Rampur Pelites, Western Himalayas: Implications for Their Provenance and Weathering,” Precambrian Res. 108, 1–16 (2001).

    Article  Google Scholar 

  30. V. Rachold and H.-J. Brumsack, “Inorganic Geochemistry of Albian Sediments from the Lower Saxotry Basin NW Germany: Palaeoenvironmental Constraints and Orbital Cycles,” Palaeogeogr. Palaeoclimat. Palaeoecol. 174, 121–143 (2001).

    Article  Google Scholar 

  31. Y. I. Lee, “Provenance Derived from the Geochemistry of Late Paleozoic-Early Mesozoic Mudrocks of the Pyeongan Supergroup, Korea,” Sediment. Geol. 149, 219–235 (2002).

    Article  Google Scholar 

  32. A. V. Maslov, E. Z. Gareev, M. T. Krupenin, et al., “Application of Petro-and Geochemical Information for the Reconstruction of Sedimentary Rock Setting as Exemplified by the Riphean Type Section,” in Proceedings of Conference on Terrigenous Sedimentary Sequences of the Urals and Adjacent Territories: Sedimento-and Lithogenesis, and Minerageny, Yekaterinburg, Russia, 2002 (Inst. Geol. Geokhim. Uro RAS, Yekaterinburg, 2002), pp. 143–154 [in Russian].

    Google Scholar 

  33. A. V. Maslov, E. Z. Gareev, M. T. Krupenin, and Yu. L. Ronkin, “The Cr/Th Ratio in the Riphean Shales of the Bashkirian Meganticlinorium as an Indicator of the Tectonic Evolution of Provenances,” in Proceedings of 36th Conference on the Tectonics and Geodynamics of the Continental Lithosphere, Moscow, Russia, 2003 (GEOS, Moscow, 2003), Vol. 2, pp. 36–40 [in Russian].

    Google Scholar 

  34. A. V. Maslov, M. T. Krupenin, Yu. L. Ronkin, et al., “REE, Cr, Th, and Sc in Shales from the Riphean Type Section as Indicators of the Composition and Evolution of Provenances,” Litosfera, No. 1, 70–112 (2004).

  35. A. V. Maslov, Yu. L. Ronkin, M. T. Krupenin, et al., “The Lower Riphean Fine-Grained Aluminosilicate Clastic Rocks of the Bashkir Anticlinorium in the Southern Urals: Composition and Evolution of Their Provenance,” Geokhimiya, No. 6, 648–669 (2004) [Geochem. Int. 42, 561–578 (2004)].

  36. B. D. Ablizin, M. L. Klyuzhina, F. A. Kurbatskaya, and A. M. Kurbatskii, Upper Riphean and Vendian of the Western Slope of the Central Urals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  37. M. L. Klyuzhina, Vendian System of the Urals (Inst. Geol. Geokhim. UrO AN SSSR, Sverdlovsk, 1991) [in Russian].

    Google Scholar 

  38. Stratigraphic Schemes of the Urals (Precambrian and Paleozoic) (Roskomnedra, IGG UrO RAN, Yekaterinburg, 1993) [in Russian].

  39. N. A. Rumyantseva, “Alkaline Volcanism of the Western Slope of the Urals,” in Pre-Ordovician History of the Urals (UNTs AN SSSR, Sverdlovsk, 1980), pp. 3–29 [in Russian].

    Google Scholar 

  40. Yu. D. Smirnov, L. I. Luk’yanova, and N. A. Rumyantseva, “Magmatic Rocks of the Western Slope of the Urals and Timan and Their Relations with Kimberlites,” in Proceedings of Conference on the Geology and Mineral Resources of the Northeastern Part of the USSR and Northern Urals, Syktyvkar, USSR, 1973 (Inst. Geol. Komi Fil. AN SSSR, Syktyvkar, 1973), Vol. 2, pp. 319–324 [in Russian].

    Google Scholar 

  41. S. B. Suslov, V. N. Zorin, A. N. Kinev, et al., State Geological Map of the Russian Federation. Scale 1: 200000. Second Edition. Permian Series. Sheet O-40-XVII. Explanatory Notes (Geokarta, Perm, 2002) [in Russian].

    Google Scholar 

  42. E. V. Karpukhina, V. A. Pervov, D. Z. Zhuravlev, and V. A. Lebedev, “The Age of Mafic-Ultramafic Magmatism on the Western Slope of the Urals: First Sm-Nd and Rb-Sr Data,” Dokl. Akad. Nauk 369, 809–811 (1999) [Dokl. Earth Sci. 369A, 1384–1386 (1999)].

    Google Scholar 

  43. E. V. Karpukhina, V. A. Pervov, and D. Z. Zhuravlev, “Mafic-Ultramafic Magmatism on the Western Slope of the Urals: Vendian-Cambrian Intraplate Magmatism,” in Proceedings of the 33rd Conference on General Tectonic Problems, Moscow, Russia, 2000 (GEOS, Moscow, 2000), pp. 194–197 [in Russian].

    Google Scholar 

  44. D. V. Grazhdankin, A. V. Maslov, T. M. R. Mastill, and M. T. Krupenin, “The Ediacaran White Sea Biota in the Central Urals,” Dokl. Akad. Nauk 401, 784–788 (2005) [Dokl. Earth Sci. 401A, 382–386 (2005)].

    Google Scholar 

  45. A. A. Kukharenko, “Lithology and Formation Conditions of the Asha Group, Western Slope of the Central Urals,” Vopr. Litol. Paleogeogr. Uch. Zapiski Leningr. Gos. Univ. Ser. Geol., No. 310, 245–274 (1962).

  46. F. A. Kurbatskaya, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Permsk. Gos. Univ., Perm, 1968).

    Google Scholar 

  47. F. A. Kurbatskaya and B. D. Ablizin, “Paleogeography of the Upper Precambrian Terrigenous Sequences of the Western Slope of the Central Urals (Western Subzone of the Vishera-Chusovaya Anticlinorium),” in Geology and Petrography of the Western Urals (Permsk. Gos. Univ., Perm, 1970), pp. 109–126 [in Russian].

    Google Scholar 

  48. V. I. Kozlov, A. A. Krasnobaev, Yu. L. Ronkin, and V. M. Gorozhanin, “Main Problems in the Vendian Geology and Geochronology of the South and Central Urals,” in Proceedings of Conference on the Stratigraphy of the Upper Proterozoic of the USSR (Riphean and Vendian) Ufa, USSR, 1990 (IG BNTs UrO AN SSSR, Ufa, 1990), pp. 66–68 [in Russian].

    Google Scholar 

  49. Precambrian Geology of the USSR, Ed. by V. Ya. Khil’tova, A. B. Vrevskii, S. B. Lobach-Zhuchenko, et al. (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  50. V. E. Khain and N. A. Bozhko, Historical Geotectonics of the Precambrian (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  51. V. A. Koroteev, A. A. Krasnobaev, and V. M. Necheukhin, “Problems of Geochronology and Paleogeodynamics of the Vendian-Early Paleozoic Period in the Earth Evolution,” in Paleogeography of the Vendian-Early Paleozoic of Northern Eurasia (Inst. Geol. Geokhim. UrO RAS, Yekaterinburg, 1998), pp. 4–8 [in Russian].

    Google Scholar 

  52. V. M. Necheukhin, “Metallogeny of Vendian-Early Paleozoic Geodynamic Associations,” in Paleogeography of the Vendian-Early Paleozoic of Northern Eurasia (Inst. Geol. Geokhim. UrO RAN, Yekaterinburg, 1998), pp. 25–30 [in Russian].

    Google Scholar 

  53. V. N. Puchkov, “Tectonics of the Urals: Modern Concepts,” Geotektonika, No. 4, 42–61 (1997) [Geotectonics 31, 294–312 (1997)].

  54. V. N. Puchkov, Paleogeodynamics of the Southern and Central Urals (Dauriya, Ufa, 2000) [in Russian].

    Google Scholar 

  55. V. V. Bochkarev and R. G. Yazeva, Subalkaline Magmatism of the Urals (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2000) [in Russian].

    Google Scholar 

  56. F. A. Kurbatskaya, “Structure and Evolution of the Junction Zone between the Urals and East European Platform,” in Precambrian Volcanosedimentary Complexes of the Urals (UNTs RAN, Sverdlovsk, 1986), pp. 50–59 [in Russian].

    Google Scholar 

  57. F. A. Kurbatskaya, “Magmatism, Metamorphism, and Metallogeny of the Early Vendian Intracratonic Rift in the Urals,” in Proceedings of the First All-Russia Petrographic Conference, Ufa, Russia, 1995 (UNTs RAN, Ufa, 1995), Vol. 1, pp. 116–117 [in Russian].

    Google Scholar 

  58. F. A. Kurbatskaya, “On the Riphean-Vendian Boundary in the Central Urals,” in Proceedings of Conference on General Problems of the Riphean Stratigraphy and Geological History of Northern Eurasia, Yekaterinburg, 1995 (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1995), pp. 53–54 [in Russian].

    Google Scholar 

  59. R. G. Iblaminov, F. A. Kurbatskaya, G. V. Lebedev, et al., “Metallogeny of the Riphean and Vendian of the Western Slope of the Northern and Central Urals,” in Proceedings of Conference on the Geology and Minerageny of the Precambrian of the Northeastern European Platform and Northern Urals, Syktyvkar, Russia, 1996 (Geoprint, Syktyvkar, 1996), pp. 76–77 [in Russian].

    Google Scholar 

  60. A. V. Maslov, “Some Specific Features of Early Vendian Sedimentation in the Southern and Middle Urals,” Litol. Polezn. Iskop., No. 6, 624–639 (2000) [Lithol. Miner. Resour. 35, 556–570 (2000)].

  61. F. A. Kurbatskaya, “On Boundary of the Vendian Serebryanka Group and Facies-Paleotectonic Zoning of Its Sections in the Urals,” in Proceedings of Conference on the Upper Proterozoic (Riphean and Vendian) Stratigraphy of the USSR, Ufa, Russia, 1990 (IG BNTs UrO AN SSSR, Ufa, 1990), pp. 74–76 [in Russian].

    Google Scholar 

  62. F. A. Kurbatskaya and O. V. Kuchina, “Vendian Phosphate-Bearing Rocks of the Central Urals,” in Proceedings of Conference on Problems of Mineralogy, Petrography, and Metallogeny (Permsk. Gos. Univ., 2000), pp. 61–65 [in Russian].

  63. N. M. Chumakov, “Tillites and Tilloids of the Western Slope of the Central Urals,” in Proceedings of All-Russia Conference on the Paleogeography of the Vendian-Early Paleozoic, Upper Riphean, Vendian, and Lower Paleozoic Sections of the Central and Southern Urals. Guidebook of Geological Excursions, Yekaterinburg, Russia, 1996 (Inst. Geol. Geokhim., Yekaterinburg, 1996), pp. 74–82 [in Russian].

    Google Scholar 

  64. A. V. Maslov, D. V. Grazhdankin, and M. T. Krupenin, “Sedimentation Features and Settings of Sedimentary Successions from the Lower Subformation of the Vendian Chernyi Kamen Formation in the Sylvitsa River Basin,” in Yearbook-2002 (Inst. Geol. Geokhim., Yekaterinburg, 2003), pp. 70–82 [in Russian].

    Google Scholar 

  65. A. V. Maslov, D. V. Grazhdankin, and M. T. Krupenin, “Chernyi Kamen Formation of the Us’va River Basin in the Middle Urals (Structure, Sedimentology, and Formation Conditions,” in Yearbook-2003 (Inst. Geol. Geokhim., Yekaterinburg, 2004), pp. 65–86 [in Russian].

    Google Scholar 

  66. M. L. Klyuzhina, Candidate’s Dissertation in Geology and Mineralogy (IGG UFAN SSSR, Sverdlovsk, 1969).

    Google Scholar 

  67. A. V. Maslov, “Structural Features of the Rocks of the Upper Vendian Ust-Syl’vitsa Formation in the Type Section: Evidence for the Interpretation of Formation Conditions,” in Ezhegodnik-2002 (Inst. Geol. Geokhim., Yekaterinburg, 2003), pp. 65–69 [in Russian].

    Google Scholar 

  68. H. W. Nesbitt, “Mobility and Fractionation of Rare Elements during Weathering of a Granodiorite,” Nature 279, 206–210 (1979).

    Article  Google Scholar 

  69. B. E. Davis, Applied Soil Trace Elements (Wiley & Sons, New York, 1980).

    Google Scholar 

  70. D. J. Wronkiewicz and K. C. Condie, “Geochemistry and Mineralogy of Sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic Evolution during the Early Proterozoic,” Geochim. Cosmochim. Acta 54, 343–354 (1990).

    Article  Google Scholar 

  71. S. M. McLennan, S. R. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical Approaches to Sedimentation, Provenance and Tectonics,” in Processes Controlling the Composition of Clastic Sediments, Ed. by M. J. Johnsson and A. Basu, Geol. Soc. Am. Spec. Pap. 284, 21–40 (1993).

  72. G. H. Girty, A. D. Hanson, C. Knaack, and D. Johnson, “Provenance Determined by REE, Th, Sc Analyses of Metasedimentary Rocks, Boyden Cave Roof Pendant, Central Sierra Nevada, California,” J. Sed. Res. B64, 68–73 (1994).

    Google Scholar 

  73. F. P. Bierlein, “Rare-Earth Element Geochemistry of Clastic and Chemical Metasedimentary Rocks Associated with Hydrothermal Sulphide Mineralisation in the Olary Block, South Australia,” Chem. Geol. 122, 77–98 (1995).

    Article  Google Scholar 

  74. R. L. Cullers, “The Control on the Major-and Trace-Element Evolution of Shales, Siltstones and Sandstones of Ordovician to Tertiary Age in the Wet Mountains Region, Colorado, U.S.A.,” Chem. Geol. 123, 107–131 (1995).

    Article  Google Scholar 

  75. S. M. McLennan, S. R. Taylor, M. T. McCulloch, and J. B. Maynard, “Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites: Crustal Evolution and Plate Tectonic Associations,” Geochim. Cosmochim. Acta 54, 2015–2050 (1990).

    Article  Google Scholar 

  76. R. L. Cullers and J. Graf, “Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks, Ore Petrogenesis,” in Rare-Earth Geochemistry, Ed. by P. Hendersen (Elseiver, Amsterdam, 1983), pp. 275–312.

    Google Scholar 

  77. S. M. McLennan and S. R. Taylor, “Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends,” J. Geol. 99, 1–21 (1991).

    Article  Google Scholar 

  78. A. K. Gibbs, C. W. Montgomery, P. A. O’Day, et al., “The Archean-Proterozoic Transition: Evidence from the Geochemistry of Metasedimentary Rocks of Guyana and Montana,” Geochim. Cosmochim. Acta 50, 2125–2141 (1986).

    Article  Google Scholar 

  79. D. J. Wronkiewicz and K. C. Condie, “Geochemistry and Mineralogy of Sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic Evolution during the Early Proterozoic,” Geochim. Cosmochim. Acta 54, 343–354 (1990).

    Article  Google Scholar 

  80. K. C. Condie and D. A. Wronkiewicz, “The Cr/Th Ratio in Precambrian Pelites from the Kaapvaal Craton as an Index of Craton Evolution,” Earth Planet. Sci. Lett. 97, 256–267 (1990).

    Article  Google Scholar 

  81. B.-M. Jahn and K. C. Condie, “Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites,” Geochim. Cosmochim. Acta 59, 22–39 (1995).

    Article  Google Scholar 

  82. R. L. Cullers and V. N. Podkovyrov, “Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling,” Precambrian Res. 104, 77–93 (2000).

    Article  Google Scholar 

  83. S. M. McLennan and S. Hemming, “Samarium/Neodymium Elemental and Isotopic Systematics in Sedimentary Rocks,” Geochim. Cosmochim. Acta 56, 997–998 (1992).

    Google Scholar 

  84. J. I. Garver, P. R. Royce, and T. A. Smick, “Chromium and Nickel in Shale of the Tacinic Foreland: A Case Study for the Provenance of Fine-Grained Sediments with an Ultramafic Source,” J. Sed. Res. 66, 100–106 (1996).

    Google Scholar 

  85. M. M. Herron, “Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data,” J. Sed. Petrol. 58, 820–829 (1988).

    Google Scholar 

  86. K. R. Ludwig, “ISOPLOT—A Plotting and Regression Program for Radiogenic-Isotope Data, Version 2.57,” U.S. Geol. Surv. Open-File Rept. 91-445 (1992).

  87. N. M. Rock, J. A. Webb, N. J. McNaughton, et al., “Nonparametric Estimation of Averages and Errors for Small Datasets in Isotope Geoscience: A Proposal,” Chem. Geol. 66, 163–177 (1987).

    Google Scholar 

  88. A. Rottura, G. M. Bargossi, V. Caironi, et al., “Petrology, Geochemistry and Sr, Nd Isotopes of Contrasting Hercynian Granitoids from the Southern Calabrian Arc (South Italy),” Miner. Petrogr. Acta 32, 1–36 (1989).

    Google Scholar 

  89. P. Spadea, L. Tortorici, and G. Lanzafame, “Ophiolites of the Tyrrhenian Coastal Chain,” in 6th Ophiolite Field Conference. Field Excursion. Guidebook. Florence, Italy, 1980 (Florence, 1980), pp. 19–27.

  90. R. K. O’Nions, P. J. Hamilton, and P. J. Hooker, “A Nd Isotope Investigation of Sediments Related to Crustal Development in the British Isles,” Earth Planet. Sci. Lett. 63, 229–240 (1983).

    Article  Google Scholar 

  91. C. D. Frost and R. K. O’Nions, “Nd Evidence for Proterozoic Crustal Development in the Belt-Purcell Supergroup,” Nature 312, 53–56 (1984).

    Article  Google Scholar 

  92. R. G. Miller and R. K. O’Nions, “The Provenance and Crustal Residence Ages of British Sediments in Relation to Palaeogeographic Reconstructions,” Earth. Planet. Sci. Lett. 68, 459–470 (1984).

    Article  Google Scholar 

  93. R. G. Miller and R. K. O’Nions, “Source of Precambrian Chemical and Clastic Sediments,” Nature 314, 325–330 (1985).

    Article  Google Scholar 

  94. R. A. Burwash, P. A. Cavell, and E. J. Burwash, “Source Terranes for Proterozoic Sedimentary Rocks in Southern British Columbia: Nd Isotopic and Petrographic Evidence,” Can. J. Earth Sci. 25, 824–832 (1988).

    Article  Google Scholar 

  95. A. Dia, B. Dupre, C. Gariepy, and C. J. Allegre, “Sm-Nd and Trace-Element Characterization of Shales from the Abitibi Belt, Labrador Trough, and Appalachian Belt: Consequences for Crustal Evolution through Time,” Can. J. Earth Sci. 27, 758–766 (1990).

    Google Scholar 

  96. X. Li and M. T. McCulloch, “Secular Variation in the Nd Isotopic Composition of Neoproterozoic Sediments from the Southern Margin of the Yangtze Block: Evidence for a Proterozoic Continental Collision in Southeast China,” Precambrian Res. 76, 67–76 (1996).

    Article  Google Scholar 

  97. V. P. Kovach, A. B. Kotov, and V. I. Berezkin, “Age Limits of High-Grade Metamorphic Supracrustal Complexes in the Central Aldan Shield: Sm-Nd Isotopic Data,” Stratigr. Geol. Korrelyatsiya 7, 3–17 (1999) [Stratigr. Geol. Correlation 7, 1–14 (1999)].

    Google Scholar 

  98. V. P. Kovach, A. B. Kotov, A. P. Smelov, et al., “Evolutionary Stages of the Continental Crust in the Buried Basement of the Eastern Siberian Platform: Sm-Nd Isotopic Data,” Petrologiya 8, 394–408 (2000) [Petrology 8, 353–365 (2000)].

    Google Scholar 

  99. R. G. Miller, R. K. O’Nions, P. J. Hamilton, and E. Welin, “Crustal Residence Ages of Clastic Sediments, Orogeny and Continental Evolution,” Chem. Geol. 57, 87–99 (1986).

    Article  Google Scholar 

  100. V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, et al., “Magmatism as Factor of Crust Evolution in the Central Asian Foldbelt: Sm-Nd Isotopic Data,” Geotektonika, No. 3, 21–41 (1999) [Geotectonics 33, 191–208 (1999)].

  101. E. V. Karpukhina, V. A. Pervov, and D. Z. Zhuravlev, “Petrology of the Subalkaline Volcanism in the Western Slope of the Ural Mountains—An Indicator of the Late Vendian Rifting,” Petrologiya 9, 480–503 (2001) [Petrology 9, 415–436 (2001)].

    Google Scholar 

  102. E. V. Bibikova, S. B. Lobach-Zhuchenko, M. A. Semikhatov, et al., “Precambrian Time Scale for the East European Platform and Its Framing,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 8–22 (1989).

  103. M. A. Semikhatov, “General Subdivision of the Precambrian: Conceptual Analysis,” in Proceedings of the Second USSR Conference on General Problems of Precambrian Subdivision of the USSR, Ufa, Russia, 1990 (BNTs UrO AN SSSR, Ufa, 1990), pp. 35–49 [in Russian].

    Google Scholar 

  104. M. A. Semikhatov, K. A. Shurkin, E. M. Aksenov, et al., “New Precambrian Stratigraphic Scale of the USSR,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 3–16 (1991).

  105. M. A. Semikhatov, “Recent Concepts of the General Subdivision of the Precambrian: An Analysis,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 8, 3–13 (1991).

  106. Unified and Correlation Stratigraphic Schemes of the Urals (UNTs AN SSSR, Uralgeologiya, Sverdlovsk, 1980) [in Russian].

  107. N. M. Chumakov, Precambrian Tillites and Tilloids (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  108. Climate during Large Biospheric Rearrangements, Ed. by M. A. Semikhatov and N. M. Chumakov (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  109. Vendian System. Historical-Geological and Paleontological Background, Ed. by B. S. Sokolov and M. A. Fedonkin (Nauka, Moscow, 1985), Vol. 2 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Maslov, Yu.L. Ronkin, M.T. Krupenin, G.A. Petrov, A.Yu. Kornilova, O.P. Lepikhina, O.Yu. Popova, 2006, published in Geokhimiya, 2006, No. 6, pp. 610–632.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, A.V., Ronkin, Y.L., Krupenin, M.T. et al. Systematics of rare earth elements, Th, Hf, Sc, Co, Cr, and Ni in the vendian pelitic rocks of the Serebryanka and Sylvitsa groups from the western slope of the Central Urals: A tool for monitoring provenance composition. Geochem. Int. 44, 559–580 (2006). https://doi.org/10.1134/S0016702906060036

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906060036

Keywords

Navigation