Skip to main content
Log in

The effects of density difference and surface tension on the development of Rayleigh-Taylor instability of an interface between fluid media

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

To describe the evolution of an interface between two immiscible media, an equation for a volume fraction function is derived, with the interface curvature effect being described by a “continuum model” of a surface tension force. A numerical study of the Rayleigh-Taylor instability problem is performed for different density ratios ρ 1/ρ 2 on the interface, including the real cases corresponding to available experimental data. At the initial stage, the instability development is independent of ρ 1/ρ 2 and consistent with the Taylor linear theory, then (for ρ 1/ρ 2 < 5) a spiral-like Kelvin-Helmholtz instability structure is observed. For ρ 1/ρ 2 < 2, the instability development pattern remains symmetric until large times when (same as for large ρ 1/ρ 2) an asymmetry appears. The surface tension and the viscosity result in the suppression of the Rayleigh-Taylor instability disturbances and secondary small-scale irregularities of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Cabot and A.W. Cook, “Reynolds Number Effects on Rayleigh-Taylor Instability with Possible Implications for Type-Ia Supernovae,” Nature Phys. 2, 562–568 (2006).

    Article  ADS  Google Scholar 

  2. N.J. Hammer, H.-Th. Janka, and E. Müller, “Three-Dimensional Simulations of Mixing Instabilities in Supernova Explosions,” Astrophys. J. 714, 1371–1385 (2010).

    Article  ADS  Google Scholar 

  3. S.I. Abarzhi, “Review of Theoretical Modelling Approaches of Rayleigh-Taylor Instabilities and Turbulent Mixing,” Phil. Trans. R. Soc. A. 368, 1809–1828 (2010).

    Article  ADS  MATH  Google Scholar 

  4. G. Dimonte, D.L. Youngs, A. Dimits, et al., “A Comparative Study of the Turbulent Rayleigh-Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration,” Phys. Fluids 16, 1668–1693 (2004).

    Article  ADS  Google Scholar 

  5. S.I. Voropaev, Y.D. Afanasyev, and G.J.F. van Heijst, “Experiments on the Evolution of Gravitational Instability on an Overturned, Initially Stably Stratified Fluid,” Phys. Fluids A. 5, 2461–2466 (1993).

    Article  ADS  Google Scholar 

  6. S.N. Yakovenko, T.G. Thomas, and I.P. Castro, “A Turbulent Patch Arising from a Breaking Internal Wave,” J. Fluid Mech. 677, 103–133 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. C.W. Hirt and B.D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys. 39, 201–225 (1981).

    Article  ADS  MATH  Google Scholar 

  8. M. Rudman, “Volume-Tracking Method for Interfacial Flow Calculations,” Int. J. Numer. Meth. Fluids 24, 671–691 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. F.J. Kelecy and R.H. Pletcher, “The Development of a Free Surface Capturing Approach for Multidimensional Free Surface Flows in Closed Containers,” J. Comput. Phys. 138, 939–980 (1997).

    Article  ADS  MATH  Google Scholar 

  10. J.U. Brackbill, D.B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension,” J. Comput. Phys. 100, 335–354 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. S.N. Yakovenko and K.S. Chan, “Application of a Continuum Model for the Surface Tension Force to the Rayleigh-Taylor Instability Problem,” Thermophysics and Aeromechanics 18(3), 449–461 (2011).

    Article  Google Scholar 

  12. S.N. Yakovenko and K.S. Chan, “Application of Volume-Fraction Fluxes in a Two-Fluid Flow,” Thermophysics and Aeromechanics 15(2), 449–461 (2008).

    Article  Google Scholar 

  13. G.I. Taylor, “The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I,” Proc. R. Soc. Lond. A. 201, 192–196 (1950).

    Article  ADS  MATH  Google Scholar 

  14. D.J. Lewis, “The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. II,” Proc. R. Soc. Lond. A. 202, 81–96 (1950).

    Article  ADS  Google Scholar 

  15. D.I. Pullin, “Numerical Studies of Surface-Tension Effects in Nonlinear Kelvin-Helmholtz and Rayleigh-Taylor Instability,” J. Fluid Mech. 119, 507–532 (1982).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. B.J. Daly, “Numerical Study of Two-Fluid Rayleigh-Taylor Instability,” Phys. Fluids 10, 297–307 (1967).

    Article  ADS  MATH  Google Scholar 

  17. D.L. Youngs, “Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor Instability,” Physica D 12, 32–44 (1984).

    Article  ADS  Google Scholar 

  18. G. Tryggvason, “Numerical Simulations of the Rayleigh-Taylor Instability,” J. Comput. Phys. 75, 253–282 (1988).

    Article  ADS  MATH  Google Scholar 

  19. D.L. Youngs, “Modelling Turbulent Mixing by Rayleigh-Taylor Instability,” Physica D 37, 270–287 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  20. G.R. Baker, D.I. Meiron, and S.A. Orszag, “Vortex Simulations of the Rayleigh-Taylor Instability,” Phys. Fluids 23, 1485–1490 (1980).

    Article  ADS  MATH  Google Scholar 

  21. B.J. Daly, “Numerical Study of the Effect of Surface Tension on Interface Instability,” Phys. Fluids 12, 1340–1354 (1969).

    Article  ADS  MATH  Google Scholar 

  22. H.W. Emmons, C.T. Chang, and B.C. Watson, “Taylor Instability of Finite Surface Waves,” J. Fluid Mech. 7, 177–193 (1960).

    Article  ADS  MATH  Google Scholar 

  23. F.H. Harlow and J.E. Welch, “Numerical Study of Large-Amplitude Free-Surface Motions,” Phys. Fluids 9, 842–851 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Yakovenko.

Additional information

Original Russian Text © S.N. Yakovenko, 2014, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2014, Vol. 49, No. 6, pp. 54–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, S.N. The effects of density difference and surface tension on the development of Rayleigh-Taylor instability of an interface between fluid media. Fluid Dyn 49, 748–760 (2014). https://doi.org/10.1134/S0015462814060064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462814060064

Keywords

Navigation