Skip to main content
Log in

Measurement of the transpolar potential in laboratory magnetosphere

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Results of measurements of the transpolar potential in a laboratory magnetosphere are presented. Its approximately linear dependence on the kinetic energy of ions of the incoming flow is found. The measurements of the electric potential in plasma have shown the presence of an asymmetry along the dawn-dusk line. Near the boundary layer at the dawn side, the potential is systematically higher than the average values, while at the dusk side it is systematically lower. The observed difference in the plasma potential in the lowlatitude equatorial part of the magnetosphere by its sign and magnitude approximately corresponds to the transpolar potential at the poles of a dipole. The obtained laboratory data give a direct confirmation of the magnetospheric generator model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podgornyi, I.M. and Sagdeev, R.Z., Physics of Interplanetary Plasma and Laboratory Experiments, Usp. Fiz. Nauk, 1969, vol. 98, no. 3, p. 409.

    ADS  Google Scholar 

  2. Baranov, V.B., On Modeling of Flow of Interplanetary Plasma around Magnetosphere of the Earth and Planets, Kosm. Issled., 1969, vol. 2, no. 1, p. 109.

    MathSciNet  ADS  Google Scholar 

  3. Dubinin, E.M. and Podgorny, I.M., Particle Precipitation and Radiation Belt in Laboratory Experiments, J. Geophys. Res., 1974, vol. 79, no. 10, p. 1426.

    Article  ADS  Google Scholar 

  4. Rahman, H.U., Yur, G., Wong, G., and White, R.S., Laboratory Simulation of the Large-Scale Birkeland Current System in the Polar Region with Northward Interplanetary Magnetic Field, J. Geophys. Res., 1989, vol. 94, no. A6, p. 6873.

    Article  ADS  Google Scholar 

  5. Dubinin, E.M., Podgornyi, I.M., and Potanin, Yu.N., Experimental Proof of Existence of Open and Closed Models of the Magnetosphere, Kosm. Issled., 1977, vol. 15, no. 6, p. 866.

    ADS  Google Scholar 

  6. Garnier, D.T., Hansen, A., Mauel, M.E., et al., Production and Study of High-Beta Plasma Confined by a Superconducting Dipole Magnet, Phys. of Plasmas, 2006, vol. 13, p. 056111.

    Article  ADS  Google Scholar 

  7. Constantin, C., Gekelman, W., Pribyl, P., et al., Collisionless Interaction of an Energetic Laser Produced Plasma with a Large Magnetoplasma, Astrophysics and Space Science, 2009, vol. 322, p. 155.

    Article  ADS  Google Scholar 

  8. Bulanov, S.V., Esirkepov, T.Zh., Habs, D., et al., Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics, Eur. Phys. J. D, 2009, vol. 55, p. 483.

    Article  ADS  Google Scholar 

  9. Bamford, R., Gibson, K.J., Thornton, A.J., et al., The Interaction of a Flowing Plasma with a Dipole Magnetic Field: Measurements and Modeling of a Diamagnetic Cavity Relevant to Spacecraft Protection, Plasma Phys. Controlled Fusion, 2008, vol. 50, p. 124025.

    Article  ADS  Google Scholar 

  10. Funaki, I., Kojima, H., Yamakawa, H., et al., Laboratory Experiment of Plasma Flow around Magnetic Sail, Astrophysics and Space Science, 2007, vol. 307, no. 1, p. 63.

    Article  ADS  Google Scholar 

  11. Shabanskii, V.P., Veselovskii, I.S., Koval’, A.D., et al., Application of Artificial Magnetic Fields in Space Research, in Gagarinskie nauch. chteniya po kosmonavtike i aviatsii. Mater. dokl. i soobshch. na 18 Gagarinskikh chteniyakh, 1988 (Gagarin Readings on Space and Aviation Science. Reports and Communications at 18th Gagarin Readings, 1988), Moscow, 1989, p. 207.

  12. Zakharov, Yu.P., Antonov, V.M., Boyarintsev, E.L., et al., On the Interaction Effects of Ionospheric Plasma with Dipole Magnetic Field of the Spectrometer AMS-02 Moving Onboard of International Space Station, Proc. Int. Conf. on “Space Science & Communication”, (26–27 October 2009, Port Dickson, Malaysia), 2009, p. 96.

  13. Ponomarenko, A.G., Zakharov, Yu.P., Antonov, V.M., et al., Laser Plasma Experiments to Simulate Coronal Mass Ejections during Giant Solar Flare and Their Strong Impact onto Magnetospheres, IEEE Trans. Plasma Sci., 2007, vol. 35, p. 813.

    Article  ADS  Google Scholar 

  14. Ponomarenko, A.G., Zakharov, Yu.P., Antonov, V.M., et al., Simulation of Strong Magnetospheric Disturbances in Laser-Produced Plasma Experiments, Plasma Phys. Controlled Fusion, 2008, vol. 50, p. 074015.

    Article  ADS  Google Scholar 

  15. Zakharov, Yu.P., Antonov, V.M., Boyarintsev, E.L., et al., New Type of Laser-Plasma Experiments to Simulate an Extreme and Global Impact of Giant Coronal Mass Ejections onto Earth’s Magnetosphere, J. Phys.: Conf. Ser., 2008, vol. 112, p. 042011.

    Article  ADS  Google Scholar 

  16. Shaikhislamov, I.F., Antonov, V.M., and Zakharov, Yu.P., Laboratory Simulation of Field Aligned Currents in Experiment on Laser-Produced Plasma Interacting with Magnetic Dipole, Plasma Phys. Controlled Fusion, 2009, vol. 51, no. 10, p. 105005.

    Article  ADS  Google Scholar 

  17. Shaikhislamov, I.F., Zakharov, Yu.P., Posukh, V.G., et al., Laboratory Experiment on Region-1 Field-Aligned Current and Its Origin in the Low-Latitude Boundary Layer, Plasma Phys. Controlled Fusion, 2011, vol. 53, no. 3, p. 035017.

    Article  ADS  Google Scholar 

  18. Iijima, T. and Potemra, T.A., The Amplitude Distribution of Field-Aligned Currents at Northern High Latitudes Observed by TRIAD, J. Geophys. Res., 1976, vol. 81, p. 2165.

    Article  ADS  Google Scholar 

  19. Shepherd, S.G., Polar Cap Potential Saturation: Observations, Theory, and Modeling, J. of Atmospheric and Solar-Terrestrial Phys., 2007, vol. 69, no. 3, p. 234.

    Article  ADS  Google Scholar 

  20. Korth, H., Anderson, B.J., and Waters, C.L., Statistical Analysis of the Dependence of Large-Scale Birkeland Currents on Solar Wind Parameters, Ann. Geophys., 2010, vol. 28, no. 2, p. 515.

    Article  ADS  Google Scholar 

  21. Hasegawa, A. and Sato, T., Generation of Field Aligned Current during Substorm, in Dynamics of the Magnetosphere., Akasofu, S. I., Ed., Dordrecht, Holland: D. Reidel, 1979, p. 529.

    Chapter  Google Scholar 

  22. Itonaga, M., Yoshikawa, A., and Fujita, S.A., Wave Equation Describing the Generation of Field-Aligned Current in the Magnetosphere, Earth Planets Space, 2000, vol. 52, p. 503.

    ADS  Google Scholar 

  23. Alexeev, I.I., Penetration of the Interplanetary Magnetic and Electric Fields into the Magnetosphere, Journ. Geomagn. Geoelectr., 1986, vol. 38, p. 1199.

    Article  ADS  Google Scholar 

  24. Hill, T.W., Magnetic Coupling between Solar Wind and Magnetosphere: Regulated by Ionospheric Conductance, Eos Trans. AGU, 1984, vol. 65, p. 1047.

    Google Scholar 

  25. Siscoe, G.L., Erickson, G.M., Sonnerup, B.U.O., et al., Hill Model of Transpolar Potential Saturation: Comparisons with MHD Simulations, J. Geophys. Res., 2002, vol. 107, no. A6, p. 1075.

    Article  Google Scholar 

  26. Fedder, J.A. and Lyon, J.G., The Solar Wind-Magnetosphere-Ionosphere Current-Voltage Relationship, Geophys. Res. Lett., 1987, vol. 14, p. 880.

    Article  ADS  Google Scholar 

  27. Ridley, A.J., De Zeeuw, D.L., Manchester, W.B., and Hansen, K.C., The Magnetospheric and Ionospheric Response to a Very Strong Interplanetary Shock and Coronal Mass Ejection, Advances in Space Research, 2006, vol. 38, no. 2, p. 263.

    Article  ADS  Google Scholar 

  28. Keller, K.A., Hesse, M., Kuznetsova, M., et al., Global MHD Modeling of the Impact of a Solar Wind Pressure Change, J. Geophys. Res., 2002, vol. 107, no. A7. SMP 21-1.

  29. Eastman, T.E., The Magnetospheric Boundary Layer: Site of Plasma, Momentum and Energy Transfer from the Magnetosheath into the Magnetosphere, Geophys. Res. Lett., 1976, vol. 3, no. 11, p. 685.

    Article  ADS  Google Scholar 

  30. Denisenko, V.V., Erkaev, N.V., Kitaev, A.V., and Matveenkov, I.T., Matematicheskoe modelirovanie magnitosfernykh protsessov (Mathematical Modeling of Magnetospheric Processes), Pivovarov, V.G, Ed., Novosibirsk: Nauka, 1992, p. 62.

    Google Scholar 

  31. Cowley, S.W., Magnetosphere-Ionosphere Interactions: A Tutorial Review, Magnetospheric Current Systems vol. 118 of Geophys. Monogr. Ser., Ohtani, S., et al., Eds., Washington, DC: AGU, 2000.

    Google Scholar 

  32. Sonnerup, B.U.O., Siebert, K.D., White, W.W., et al., Simulations of the Magnetosphere for Zero Interplanetary Magnetic Field: The Ground State, J. Geophys. Res., 2001, vol. 106, no. A12, p. 29419.

    Article  ADS  Google Scholar 

  33. Boyle, C.B., Reiff, P.H., and Hairston, M.R., Empirical Polar Cap Potentials, J. Geophys. Res., 1997, vol. 102, no. A1, p. 111.

    Article  ADS  Google Scholar 

  34. Kitaev, A.V. and Matveenkov, I.T., Generation of Electric Field in the Boundary Layer of the Magnetosphere in the Absence of IMF, Geomagn. Aeron., 1987, vol. 27, no. 2, p. 332.

    ADS  Google Scholar 

  35. Antonov, V.M., Boyarintsev, E.L., Zakharov, Yu.P., et al., Effect of Surface Conductivity on Formation of the Magnetosphere in Experiments with Laser Plasma Flowing around a Magnetic Dipole, Prikl. Mekh. Tekh. Fiz., 2010, vol. 51, no. 5, p. 25.

    Google Scholar 

  36. Zakharov, Yu.P., Principles of the Method of Probe Measurements in Plasma, in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), Fortov, V.E., Ed., Moscow: MAIK, 2000, vol. II, p.463.

    Google Scholar 

  37. Baumjohann, W., Matsuoka, A., Glassmeier, K.H., et al., The Magnetosphere of Mercury and Its Solar Wind Environment: Open Issues and Scientific Questions, Advances in Space Research, 2006, vol. 38, no. 4, p. 604.

    Article  ADS  Google Scholar 

  38. Managadze, G.G., Podgornyi, I.M., and Rusanov, V.D., Flow of Plasma around a Magnetic Dipole, Geomagn. Aeron., 1968, vol. 8, no. 3, p. 545.

    Google Scholar 

  39. Blanco-Cano, X., Omidi, N., and Russell, C.T., Magnetospheres: How to Make a Magnetosphere, Astronomy & Geophysics, 2004, vol. 45, no. 3, pp. 14–17.

    Article  Google Scholar 

  40. Chen, F.F., Electric Probes, in Plasma Diagnostic Techniques, Huddlestone, R.H. and Leonard, S.L., Eds., New York: Academic Press, 1965. Translated under the title Diagnostika plazmy, Moscow: Mir, 1967, p. 94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Shaikhislamov.

Additional information

Original Russian Text © I.F. Shaikhislamov, V.M. Antonov, E.L. Boyarintsev, V.G. Posukh, A.V. Melekhov, Yu.P. Zakharov, A.G. Ponomarenko, 2012, published in Kosmicheskie Issledovaniya, 2012, Vol. 50, No. 6, pp. 441–451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaikhislamov, I.F., Antonov, V.M., Boyarintsev, E.L. et al. Measurement of the transpolar potential in laboratory magnetosphere. Cosmic Res 50, 410–420 (2012). https://doi.org/10.1134/S001095251206007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001095251206007X

Keywords

Navigation