Skip to main content
Log in

The use of solutions to problems of spacecraft trajectory optimization in impulse formulation when solving the problems of optimal control of trajectories of a spacecraft with limited thrust engine: I

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

In this first part of our paper, it is suggested to use solutions to boundary value problems in the optimization problems (in impulse formulation) for spacecraft trajectories in order to obtain the initial approximation, when boundary value problems of the maximum principle are solved numerically by the shooting method. The technique suggested is applied to the problems of optimal control over motion of the center of mass of a spacecraft controlled by the thrust vector of jet engine with limited thrust in an arbitrary gravitational field in a vacuum. The method is based on a modified (in comparison to the classic scheme) shooting method computation together with the method of continuation along a parameter (maximum reactive acceleration, initial thrust-to-weight ratio, or any other parameter equivalent to them). This technique allows one to obtain the initial approximation with a high precision, and it is applicable to a wide range of optimal control problems solved using the maximum principle, if the impulse formulation makes sense for these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pontryagin, S.L., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1969.

    Google Scholar 

  2. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  3. Galeev, E.M. and Tikhomirov, V.M., Kratkii kurs teorii ekstremal’nykh zadach (A Concise Course of Extreme Problems Theory), Moscow, 1989.

  4. Grodzovskii G.L., Ivanov Yu.N., Tokarev V.V., Mekhanika kosmicheskogo poleta s maloi tyagoi (Mechanics of Low-Thrust Space Flight), Moscow: Nauka, 1966.

    Google Scholar 

  5. Ivashkin, V.V., Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na rasstoyaniya do planet (Optimization of Space Maneuvers under Constraints on the Distances to Planets), Moscow: Nauka, 1975.

    Google Scholar 

  6. Il’in, V.A. and Kuzmak, G.E., Optimal’nye perelety kosmicheskikh apparatov (Optimal Flights of Spacecraft), Moscow: Nauka, 1976.

    Google Scholar 

  7. Okhotsimskii, D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Fundamentals of Space Flight Mechanics), Moscow: Nauka, 1990.

    Google Scholar 

  8. Moiseev, N.N., Chislennye metody v teorii optimal’nykh sistem (Numerical Methods in the Theory of Optimal Systems), Moscow: Nauka, 1971.

    Google Scholar 

  9. Chernous’ko, F.L. and Banichuk, V., Variatsyonnye zadachi mekhaniki i upravleniya (Variational Problems in Mechanics and Controlling), Moscow: Nauka, 1973.

    Google Scholar 

  10. Krotov, S.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Methods and Problems of Optimal Control), Moscow: Nauka, 1973.

    Google Scholar 

  11. Fedorenko, R.P., (Introduction to Computational Physics), Moscow: MPTI, 1994.

    Google Scholar 

  12. Vasil’ev, F.P., Chislennye metody resheniya ekstremal’nykh zadach (Numerical Methods of Solution of Extremal Problems), Moscow: Nauka, 1980; 1988.

    Google Scholar 

  13. Chernous’ko, F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: metod ellipsoidov (Evaluation of Phase Status of Dynamical Systems: Ellipsoid Method), Moscow: Nauka, 1988.

    MATH  Google Scholar 

  14. Aleksandrov, V.V., Bakhvalov, N.S., Grigoriev, K.G., et al., Praktikum po chislennym metodam v zadachakh optimal’nogo upravleniya (Training in Numerical Methods for Optimal Control Problems), Moscow: Mosk. Gos. Univ., 1988.

    Google Scholar 

  15. Bordovitsyna, T.V., Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki (Modern Numerical Methods in Celestial Mechanics), Moscow: Nauka, 1984.

    Google Scholar 

  16. Hairer, E., Norsett, S.P., and Wanner, G., Solving Ordinary Differential Equations: I. Nonstiff Problems, Berlin: Springer, 1987. Translated under the title Resheniye obyknovennykh differentsial’nykh uravnenii, Moscow: Mir, 1990.

    MATH  Google Scholar 

  17. Bakhvalov, N.S., Zhidkov, N.P., and Kobel’kov, G.M., Chislennye metody (Numerical Methods), Moscow: Nauka, 1987.

    MATH  Google Scholar 

  18. Wilkinson, J.H. and C. Reinsch, Linear Algebra, Berlin: Springer, 1971. Translated under the title Spravochnik algoritmov na yazyke ALGOL. Lineinaya algebra, Moscow: Mashinostroenie, 1976.

    MATH  Google Scholar 

  19. Voevodin, V.V., Vychislitel’nye osnovy lineinoi algebry (Calculation Basis of Linear Algebra), Moscow: Nauka, 1977.

    Google Scholar 

  20. McCracken, D.D. and Dorn, W.S., Numerical Methods and FORTRAN Programming, New York: Wiley, 1964. Translated under the title Chislennye metody i programmirovanie na FORTRANe, Moscow: Mir, 1977.

    MATH  Google Scholar 

  21. Zapletin, M.P., Optimal Transfers of a Spacecraft between the Surface of the Moon and Orbits of Its Satellites:, Cand. Sci. (Phys. Math.) Dissertation, Moscow: Mosk. Gos. Univ., 1993.

    Google Scholar 

  22. Grigoriev, I.S., Investigation of Optimal Trajectories for Flights of a Spacecraft with Rocket Engine of High Limited Thrust between the Earth and the Moon, Cand. Sci. (Phys. Math.) Dissertation, Moscow: Mosk. Gos. Univ., 1996.

    Google Scholar 

  23. Grigoriev, K.G., Zapletina, E.V., and Zapletin, M.P., Optimal Spatial Transfers of a Spacecraft between the Surface of the Moon and an Orbit of Its Satellite, Kosm. Issled., 1993, vol. 31, no. 5, pp. 34–52.

    ADS  Google Scholar 

  24. Grigoriev, K.G., Fastest Maneuvers of Spacecraft, Kosm. Issled., 1994, vol. 32, no. 1, pp. 56–69.

    Google Scholar 

  25. Grigoriev, K.G., Fastest Maneuvers of Spacecraft at Minimum Mass Consumption and Limited Time, Kosm. Issled., 1994, vol. 32, no. 2, pp. 45–60.

    Google Scholar 

  26. Grigoriev, K.G. and Grigoriev, I.S., Optimal Trajectories of Spacecraft Transfers between the Earth’s Artificial Satellite Orbit and the Moon in Case of Engines of High Limited Thrust, Kosm. Issled., 1994, vol. 32, no. 6, pp. 108–129.

    MathSciNet  Google Scholar 

  27. Grigoriev, K.G. and Fedyna, A.V., Optimal Flights of a Spacecraft with a Jet Engine of High Limited Thrust between Coplanar Circular Orbits, Kosm. Issled., 1995, vol. 33, no. 4, pp. 403–416.

    Google Scholar 

  28. Grigoriev, K.G. and Grigoriev, I.S., Optimal Trajectories for the Return of a Spacecraft with jet Engine of High Limited Thrust from the Moon to Earth, Kosm. Issled., 1995, vol. 33, no. 5, pp. 513–532.

    MathSciNet  Google Scholar 

  29. Grigoriev, K.G. and Grigoriev, I.S., Optimum Spatial Trajectories for the Flight of a Spacecraft with a Large Limited Thrust Jet Engine between Orbits of Artificial satellites of the Earth and the Moon, Kosm. Issled., 1997, vol. 35, no. 1, pp. 52–75.

    Google Scholar 

  30. Grigoriev, K.G. and Zaplethin, M.P., Vertical Start in Optimization Problems of Rocket Dynamics, Kosm. Issled., 1997, vol. 35, no. 4, pp. 363–377.

    Google Scholar 

  31. Grigoriev, I.S, Grigoriev, K.G., and Petrikova, Yu.D., The Fastest Maneuvers of a Spacecraft with a Jet Engine of a Large Limited Thrust in a Gravitational Field in a Vacuum, Kosm. Issled., 2000, vol. 38, no. 2, pp. 171–192.

    Google Scholar 

  32. Grigoriev, I.S and Grigoriev, K.G, Solving Optimization Problems for the Flight Trajectories of a Spacecraft with a High-Thrust Jet Engine in Impulse Formulation for an Arbitrary Gravitational Field in a Vacuum, Kosm. Issled., 2002, vol. 40, no. 1, pp. 88–111.

    Google Scholar 

  33. Grigoriev, I.S and Grigoriev, K.G., Conditions of the Maximum Principle in the Problem of Optimal Control over an Aggregate of Dynamic Systems and Their Application to Solution of of the Problems of Optimal Control of Spacecraft Motion, Kosm. Issled., 2003, vol. 41, no. 3, pp. 307–331.

    Google Scholar 

  34. Shalashilin, V.I. and Kuznetsov, E.B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya (The Method of Continuation along a Parameter and the Best Parameterization), Moscow: Editorial URSS, 1999.

    Google Scholar 

  35. Grigolyuk, E.I. and Shalashilin, V.I., Problemy nelineinogo deformirovaniya: Metod prodolzheniya resheniya po parametru v nelineinykh zadachakh mekhaniki tverdogo tela (Problems of Nonlinear Deformation: Method of Solution Continuation along a Parameter in Nonlinear Problems of Mechanics of Solid Bodies), Moscow: Nauka, 1988.

    Google Scholar 

  36. Handelsman, M., Optimal Free-Space Fixed Thrust Trajectories Using Impulsive Trajectories as Starting Iteratives, AIAA Journal, 1966, vol.4, no. 6, pp. 1077–1082. Translated under the title Optimal’nye traektorii poleta v bezvozdushnom prostranstve spostoyannoi tyagoi pri ispol’zovanii impul’snykh traektorii v kachestve nachal’nykh priblizhenii, Raketn. Tekhn. Kosmon., 1966, vol. 6, pp. 151–158.

    MATH  MathSciNet  Google Scholar 

  37. Mordashov, S.H., One Approach to Determination of Initial Values of Conjugate Variables in Boundary Value Problems of Rocket Dynamics,, in Trudy XXVIII chtenii K.E. Tsiolkovskogo. Sektsiya Mekhanika kosmicheskogo poleta (Proc. 28th K.E. Tsiolkovskii Readings, Section of Space Flight Mechanics), Moscow: IIET RAN, 1994, pp. 73–81.

    Google Scholar 

  38. Pines, S., 1964, Constants of the Motion for Optimum Thrust Trajectories in a Central Force Fields, AIAA Journal, 1964, vol. 2, no. 11, pp. 2010–2014. Translated under the title Konstanty dvizheniya dlya optimal’nykh aktivnykh traektorii v tsentral’nom silovom pole, Raketn. Tekhn. Kosmon., 1964, no. 11, pp. 162–167.

    Article  MATH  MathSciNet  Google Scholar 

  39. Petukhov, V.G., The Use of Parameter Continuation Methods for Optimization of Low-Thrust Spacecraft Trajectories, in Trudy XXXI–XXXII chtenii K.E. Tsiolkovskogo. Sektsiya Mekhanika kosmicheskogo poleta (Proc. 31st and 32nd K.E. Tsiolkovskii Readings, Section of Space Flight Mechanics), Moscow: IIET RAN, 1999, pp. 114–121.

    Google Scholar 

  40. Egorov, V.A., Sazonov, V.V., Egorov, M.A., and Smirnov, V.V., A Comparison of Optimal and Locally Optimal Geocentric Boosts of a Spacecraft with Solar Sail,, Kosm. Issled., 1994, vol. 32, no. 6, pp. 77–88.

    Google Scholar 

  41. Filat’ev, A.S., Optimal Launch of Earth’s Artificial Satellite with the Use of Aerodynamic Forces,, Kosm. Issled., 1991, vol. 29, no. 2, pp. 255–271.

    ADS  Google Scholar 

  42. Bakhvalov, N.S., Solving Boundary Value Problems for Systems of Ordinary Differential Equations, in Sbornik Rabot VTs MGU (A Collection of Papers of Computing Center of Moscow University), 1966, pp. 9–16.

  43. Isaev, V.K. and Sonin, V.V., One Modification of the Newton Method for Numerical Solution of Boundary Value Problems, Zh. Vychisl. Mat. i Mat. Fiz., 1963, vol. 3, no. 6, pp. 1114–1116.

    MathSciNet  Google Scholar 

  44. Budak, B.M. and Vasiliev, F.P., Priblizhennye metody resheniya zadach optimal’nogo upravleniya (Approximate Methods for Solving the Problems of Optimal Control), Moscow: Mosk. Gos. Univ., 1968.

    Google Scholar 

  45. Babenko, K.I., Osnovy Chislennogo Analiza (Principles of Numerical Analysis), Moscow: Nauka, 1986.

    MATH  Google Scholar 

  46. Bogachev, K.Yu., Praktikum na EVM. Metody resheniya lineinykh sistem i nakhozhdeniya sobstvennykh znachenii (Practical Work for Computers: Methods to Solve Linear Systems and to Find Eigen Values), Moscow: Mosk. Gos. Univ., 1998.

    Google Scholar 

  47. Korpev, A.A. and Chizhonkov, E.V., Uprazhneniya po chislennym metodam (Practice in Numerical Methods), Moscow: Mosk. Gos. Univ., 2002.

    Google Scholar 

  48. Grigor’ev, I.S., Metodicheskoe posobie po chislennym metodam resheniya kraevykh zadach printsipa maksimuma v zadachakh optimal’nogo upravleniya (Manual in Numerical Methods of Solving the Boundary Value Problems of the Maximum Principle in Optimal Control Problems), Moscow: Mosk. Gos. Univ., 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Grigoriev.

Additional information

Original Russian Text © I.S. Grigoriev, K.G. Grigoriev, 2007, published in Kosmicheskie Issledovaniya, 2007, Vol. 45, No. 4, pp. 358–366.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoriev, I.S., Grigoriev, K.G. The use of solutions to problems of spacecraft trajectory optimization in impulse formulation when solving the problems of optimal control of trajectories of a spacecraft with limited thrust engine: I. Cosmic Res 45, 339–347 (2007). https://doi.org/10.1134/S0010952507040077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952507040077

PACS

Navigation