Skip to main content
Log in

Rod structures of bound water: a possible role in self-organization of biological systems and nondissipative energy transmission

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Cluster–rod structure were designed, which are comprised of tetrahedral atoms with a typical torsion angle of ~38° at interatomic bonds. These structures correspond to a muscle tissue and clathrin lattice by their metrics and topology and can be formed by bound water in these systems. It is shown that the considered rod structures, which are fragments of bound water structures, can also be involved in nondissipative energy transmission as elastic energy storing structures. The estimated length of the bound water rod structure required to absorb the energy of decomposition of an ATP molecule into ADP and a phosphate group is comparable with myosin head sizes and its step along an actin filament. A mechanism of cooperative transition of the rod structure to a fragment of the ice Ih structure was demonstrated. This transition is accompanied by nondissipative release of stored energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TYMV:

turnip yellow mosaic virus.

References

  1. N. A. Bulienkov, Sov. Phys. Crystallogr. 33 (2), 250 (1988).

    Google Scholar 

  2. N. A. Bulienkov, Sov. Phys. Crystallogr. 35 (1), 88 (1990).

    Google Scholar 

  3. N. A. Bulienkov, Sov. Phys. Crystallogr. 35 (1), 92 (1990).

    Google Scholar 

  4. N. A. Bulienkov, Biofizika 36 (2), 181 (1991).

    Google Scholar 

  5. N. A. Bulienkov, in Fields Institute Monographs, Vol. 10: Quasicrystals and Discrete Geometry, Ed. by J. Patera (American Mathematical Society, Providence, RI, 1998), pp. 67–134.

  6. N. A. Bulienkov, Biophysics (Moscow) 50 (5), 811 (2005).

    Google Scholar 

  7. N. A. Bulienkov, Crystallogr. Rep. 56 (4), 680 (2011).

    Article  ADS  Google Scholar 

  8. N. A. Bulienkov and E. A. Zheligovskaya, Struct. Chem. 28 (1), 75 (2017).

    Article  Google Scholar 

  9. N. A. Bulienkov and E. A. Zheligovskaya, Russ. J. Phys. Chem. 80 (10), 1584 (2006).

    Article  Google Scholar 

  10. V. I. Lobyshev, A. B. Solovei, and N. A. Bulienkov, Biophysics (Moscow) 48 (6), 932 (2003).

    Google Scholar 

  11. B. K. Vainstein, V. M. Fridkin, and V. L. Indenbom, Modern Crystallography, Vol. 2: Crystal Structure (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  12. N. A. Bulienkov and E. A. Zheligovskaya, J. Struct. Chem. 55 (7), 1215 (2014).

    Article  Google Scholar 

  13. Ch. de Duve, La cellule vivante, une visite guidée (Pour le Science, 1987; Mir, Moscow, 1987).

    Google Scholar 

  14. J. R. Bendall, Muscles, Molecules, and Movement (Heinemann Educational Books Ltd, London, 1969; Mir, Moscow, 1970).

    Google Scholar 

  15. A. Fotin, Y. Cheng, N. Grigorieff, et al., Nature 432, 649 (2004).

    Article  ADS  Google Scholar 

  16. N. Maeno, The Science of Ice (Hokkaido Univ. Press, Sapporo, 1981; Mir, Moscow, 1988).

    Google Scholar 

  17. A. Szent-Györgyi, Bioenergetics (Academic Press, New York, 1957; Gos. Izd. Fiz.-Mat. Lit., Moscow, 1960).

    Google Scholar 

  18. L. A. Blumenfeld, Problems in Biological Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Zheligovskaya.

Additional information

Original Russian Text © E.A. Zheligovskaya, N.A. Bulienkov, 2017, published in Biofizika, 2017, Vol. 62, No. 5, pp. 837–845.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheligovskaya, E.A., Bulienkov, N.A. Rod structures of bound water: a possible role in self-organization of biological systems and nondissipative energy transmission. BIOPHYSICS 62, 683–690 (2017). https://doi.org/10.1134/S0006350917050256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917050256

Keywords

Navigation