Skip to main content
Log in

Formation of dinitrosyl iron complexes in cardiac mitochondria

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It has been established that, in the presence of S-nitrosothiols, cysteine, and mitochondria, dinitrosyl iron complexes (DNIC) coupled to low-molecular-weight ligands and proteins are formed. The concentration of DNIC depended on oxygen partial pressure. It was shown that, under the conditions of hypoxia, the kinetics of the formation of low-molecular DNIC was biphasic. After the replacement of anaerobic conditions of incubation with aerobic ones, the level of DNIC came down; in this case, protein dinitrosyl complexes became more stable. We proposed that iron-and sulfur-containing proteins and low-molecular-weight iron complexes are the sources of iron for DNIC formation in mitochondrial suspensions. It was shown that a combination of DNIC and S-nitrosothiols inhibited effectively the respiration of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fassen and A. F. Vanin, in Radicals for Life the Various Forms of Nitric Oxide, Ed. by E. van Fassen, A. F. Vanin (Elsevier B.V., Amsterdam, 2006), pp. 19–74.

    Google Scholar 

  2. E. B. Men’shikova, V. Z. Lankin, N. K. Zenkov, et al., in Oxidative Stress, Prooxidants and Antioxidants (Slovo, 2006), pp. 84–108 [in Russian].

  3. P. S. Brookes, A.-L. Levonen, S. Shiva, et al., Free Rad. Biol. Med. 33, 755 (2002).

    Article  Google Scholar 

  4. V. Borutaite, R. Budriunaite, and G. C. Brown, Biochim. Biophys. Acta 1459, 405 (2000).

    Article  Google Scholar 

  5. A. Galkin and S. Moncada, J. Biol. Chem. 282, 37448 (2007).

    Article  Google Scholar 

  6. S. M. Nadtochiy, L. S. Burwell, and P. S. Brookes, J. Mol. Cell 42, 812 (2007).

    Google Scholar 

  7. N. A. Riobo, E. Clementi, M. Melani, et al., Biochem. J. 359, 139 (2001).

    Article  Google Scholar 

  8. L. L. Pearce, A. J. Kanai, M. W. Epperly, and J. Peterson, Nitric Oxide 13, 254 (2005).

    Article  Google Scholar 

  9. C. Giulivi, J. J. Poderoso, and A. Boveris, J. Biol. Chem. 273, 11038 (1998).

    Article  Google Scholar 

  10. E. K. Ruuge, I. V. Zabbarova, O. V. Korkina, et al., Current Topics in Biophysics 29, 37 (2005).

    Google Scholar 

  11. K. P. Kashkarov, E. V. Vasil’eva, and E. K. Ruuge, Biokhimiya 59, 813 (1994).

    Google Scholar 

  12. P. S. Brookes, E. P. Salinas, K. Darley-Usmar, et al., J. Biol. Chem. 275, 20474 (2000).

    Article  Google Scholar 

  13. V. Borutaite, R. Morkuniene, and G. C. Brown, FEBS Lett. 457, 155 (2000).

    Article  Google Scholar 

  14. K. Seya, S. Motomura, and K. Furukawa, Clin. Sci. (Lond.) 112, 113 (2007).

    Article  Google Scholar 

  15. L. L. Gudkov, K. B. Shumaev, E. I. Kalennikova, et al., Biofizika 52, 503 (2007).

    Google Scholar 

  16. L. V. Vakhnina and E. K. Ruuge, Biofizika 17, 690 (1972).

    Google Scholar 

  17. A. F. Vanin, V. A. Serezhenkov, V. D. Mikoyan, and M. V. Genkin, Nitric Oxide, Biol. Chem. 2, 224 (1998).

    Article  Google Scholar 

  18. A. Tangeras, T. Flatmark, and D. Bakstrom, Biochim. Biophys. Acta 589, 162 (1980).

    Article  Google Scholar 

  19. J. C. Toledo Jr., C. A. Bosworth, S. W. Hennon, et al., J. Biol. Chem. 283, 28926 (2008).

    Article  Google Scholar 

  20. M. C. Kennedy, W. E. Antholine, and H. Beinert, J. Biol. Chem. 272, 20340 (1997).

    Article  Google Scholar 

  21. N. V. Voevodskaya, V. A. Serezhenkov, C. E. Cooper, et al., Biochem. J. 368, 633 (2002).

    Article  Google Scholar 

  22. P. A. Rogers and H. Ding, J. Biol. Chem. 276, 30980 (2001).

    Article  Google Scholar 

  23. R. N. Watts, C. Hawkins, P. Ponka, and D. R. Richardson, Proc. Natl. Acad. Sci. USA 103, 7670 (2006).

    Article  ADS  Google Scholar 

  24. K. B. Shumaev, A. A. Gubkin, S. A. Gubkina, et al., Biofizika 51, 472 (2006).

    Google Scholar 

  25. F. Dong, X. Zhang, B. Culver, et al., Clin. Sci. (Lond.) 109, 277 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Shumaev.

Additional information

Original Russian Text © K.B. Shumaev, I.V. Sviryaeva, S.A. Gubkina, T.S. Krivova, A.F. Topunov, A.F. Vanin, E.K. Ruuge, 2010, published in Biofizika, 2010, Vol. 55, No. 3, pp. 460–466.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumaev, K.B., Sviryaeva, I.V., Gubkina, S.A. et al. Formation of dinitrosyl iron complexes in cardiac mitochondria. BIOPHYSICS 55, 406–411 (2010). https://doi.org/10.1134/S0006350910030097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910030097

Key words

Navigation