Skip to main content
Log in

Ergosterol Turnover in Yeast: An Interplay between Biosynthesis and Transport

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Sterols are important components of biological membranes that determine the physicochemical properties of lipid bilayer and regulate the functioning of membrane proteins. Being insoluble in water, sterols cannot diffuse between the membrane compartments separated by an aqueous phase. For this reason, distribution of sterols across cellular membranes is rather uneven. Membrane-to-membrane transport of sterols occurs mainly in a non-vesicular fashion and is provided by Lam and Osh proteins. In this review, we discuss the consequences of impairments in sterol biosynthesis and transport mostly relying on the studies performed on the model organism Saccharomyces cerevisiae. Despite the fact that molecular mechanisms underlying the functioning of Lam and Osh proteins are well established, the biological roles of these proteins are still unclear, because deletions of corresponding genes do not affect yeast phenotype. At the same time, disruptions in the biosynthesis of ergosterol, the major sterol of S. cerevisiae, lead to either cell death or reduced stress resistance. However, under certain conditions (e.g., mild salt or thermal stresses), a decrease in the ergosterol levels causes an increase in cell resistance. This suggests that the cells possess a mechanism facilitating rapid adjustment of the plasma membrane sterol content. We argue that the biological role of Lam proteins is, in particular, fast optimization of sterol composition of cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

Lam proteins:

lipid transfer proteins anchored at the membrane contact sites

MCS:

membrane contact site

MDR:

multidrug resistance

ORD:

OSBP-related domain (400-a.a.-long lipid-bindingdomain)

OSBP:

oxysterolbinding protein

Osh proteins:

oxysterolbinding protein homologs

PI4P:

phosphatidylinositol 4 phosphate

PM:

plasma membrane

StART:

steroidogenic acute regulatory transfer

References

  1. Desmond, E., and Gribaldo, S. (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature, Genome Biol. Evol., 1, 364–381, doi: https://doi.org/10.1093/gbe/evp036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weete, J. D., Abril, M., and Blackwell, M. (2010) Phylogenetic distribution of fungal sterols, PLoS One, 5, e10899, doi: https://doi.org/10.1371/journal.pone.0010899.

    Book  Google Scholar 

  3. Souza, C. M., and Pichler, H. (2007) Lipid requirements for endocytosis in yeast, Biochim. Biophys. Acta, 1771, 442–454, doi: https://doi.org/10.1016/j.bbalip.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  4. Gimpl, G., and Fahrenholz, F. (2002) Cholesterol as stabilizer of the oxytocin receptor, Biochim. Biophys. Acta, 1564, 384–392.

    Article  CAS  PubMed  Google Scholar 

  5. Mayor, S., Sabharanjak, S., and Maxfield, F. R. (1998) Cholesterol–dependent retention of GPI–anchored proteins in endosomes, EMBO J., 17, 4626–4638, doi: https://doi.org/10.1093/emboj/17.16.4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Umebayashi, K., and Nakano, A. (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane, J. Cell. Biol., 161, 1117–1131, doi: https://doi.org/10.1083/jcb.200303088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lucero, H. A., and Robbins, P. W. (2004) Lipid rafts–protein association and the regulation of protein activity, Arch. Biochem. Biophys., 426, 208–224, doi: https://doi.org/10.1016/j.abb.2004.03.020.

    Article  CAS  PubMed  Google Scholar 

  8. Mullner, H., and Daum, G. (2004) Dynamics of neutral lipid storage in yeast, Acta Biochim. Polonica, 51, 323–347, doi: org/035001323.

    Google Scholar 

  9. Gimpl, G., Burger, K., and Fahrenholz, F. (1997) Cholesterol as modulator of receptor function, Biochemistry, 36, 10959–10974, doi: https://doi.org/10.1021/bi963138w.

    Article  CAS  PubMed  Google Scholar 

  10. Blackwell, M. (2017) Made for each other: ascomycete yeasts and insects, Microbiol. Spectr., 5, doi: https://doi.org/10.1128/microbiolspec.FUNK-0081-2016.

    Google Scholar 

  11. Clark, A. J., and Block, K. (1959) The absence of sterol synthesis in insects, J. Biol. Chem., 234, 2578–2582.

    CAS  PubMed  Google Scholar 

  12. Rietveld, A., Neutz, S., Simons, K., and Eaton, S. (1999) Association of sterol–and glycosylphosphatidylinositol–linked proteins with Drosophila raft lipid microdomains, J. Biol. Chem., 274, 12049–12054.

    Article  CAS  PubMed  Google Scholar 

  13. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology, Science, 282, 2012–2008.

    Article  Google Scholar 

  14. Kurzchalia, T. V., and Ward, S. (2003) Why do worms need cholesterol? Nat. Cell Biol., 5, 684–688, doi: https://doi.org/10.1038/ncb0803-684.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, J., and Feigenson, G. W. (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers, Biophys. J., 76, 2142–2157, doi: https://doi.org/10.1016/S0006-3495(99)77369-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simons, K., and Ehehalt, R. (2002) Cholesterol, lipid rafts, and disease, J. Clin. Invest., 110, 597–603, doi: https://doi.org/10.1172/JCI16390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitsui, K., Hatakeyama, K., Matsushita, M., and Kanazawa, H. (2009) Saccharomyces cerevisiae Na+/H+ antiporter Nha1p associates with lipid rafts and requires sphingolipid for stable localization to the plasma membrane, J. Biochem., 145, 709–720, doi: https://doi.org/10.1093/jb/mvp032.

    Article  CAS  PubMed  Google Scholar 

  18. Bagnat, M., Chang, A., and Simons, K. (2001) Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast, Mol. Biol. Cell, 12, 4129–4138, doi: https://doi.org/10.1091/mbc.12.12.4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ejsing, C. S., Sampaio, J. L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R. W., and Shevchenko, A. (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry, Proc. Natl. Acad. Sci. USA, 106, 2136–2141, doi: https://doi.org/10.1073/pnas.0811700106.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sampaio, J. L., Gerl, M. J., Klose, C., Ejsing, C. S., Beug, H., Simons, K., and Shevchenko, A. (2011) Membrane lipidome of an epithelial cell line, Proc. Natl. Acad. Sci. USA, 108, 1903–1907, doi: https://doi.org/10.1073/pnas.1019267108.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kachroo, A. H., Laurent, J. M., Yellman, C. M., Meyer, A. G., Wilke, C. O., and Marcotte, E. M. (2015) Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity, Science, 348, 921–925, doi: https://doi.org/10.1126/science.aaa0769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daum, G., Lees, N. D., Bard, M., and Dickson, R. (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, 14, 1471–1510.

    Article  CAS  PubMed  Google Scholar 

  23. Kristan, K., and Rizner, T. L. (2012) Steroid–transforming enzymes in fungi, J. Steroid Biochem. Mol. Biol., 129, 79–91, doi: https://doi.org/10.1016/j.jsbmb.2011.08.012.

    Article  CAS  PubMed  Google Scholar 

  24. Klug, L., and Daum, G. (2014) Yeast lipid metabolism at a glance, FEMS Yeast Res., 14, 369–388, doi: https://doi.org/10.1111/1567-1364.12141.

    Article  CAS  PubMed  Google Scholar 

  25. Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y., and Zeng, B. (2017) Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae, Indian J. Microbiol., 57, 270–277, doi: https://doi.org/10.1007/s12088-017-0657-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zinser, E., Paltauf, F., and Daum, G. (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism, J. Bacteriol., 175, 2853–2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lange, Y., Swaisgood, M. H., Ramos, B. V., and Steck, T. L. (1989) Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts, J. Biol. Chem., 264, 3786–3793.

    CAS  PubMed  Google Scholar 

  28. Schneiter, R., Brugger, B., Sandhoff, R., Zellnig, G., Leber, A., Lampl, M., Athenstaedt, K., Hrastnik, C., Eder, S., Daum, G., Paltauf, F., Wieland, F. T., and Kohlwein, S. D. (1999) Electrospray ionization tandem mass spectrometry (ESI–MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain–based sorting/remodeling of distinct molecular species en route to the plasma membrane, J. Cell Biol., 146, 741–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brugger, B., Sandhoff, R., Wegehingel, S., Gorgas, K., Malsam, J., Helms, J. B., Lehmann, W. D., Nickel, W., and Wieland, F. T. (2000) Evidence for segregation of sphingomyelin and cholesterol during formation of COPI–coated vesicles, J. Cell Biol., 151, 507–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klemm, R. W., Ejsing, C. S., Surma, M. A., Kaiser, H.–J., Gerl, M. J., Sampaio, J. L., Robillard, Q., Ferguson, C., Proszynski, T. J., Shevchenko, A., and Simons, K. (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans–Golgi network, J. Cell Biol., 185, 601–612, doi: https://doi.org/10.1083/jcb.200901145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mesmin, B., and Maxfield, F. R. (2009) Intracellular sterol dynamics, Biochim. Biophys. Acta, 1791, 636–645, doi: https://doi.org/10.1016/j.bbalip.2009.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baumann, N. A., Sullivan, D. P., Ohvo–Rekila, H., Simonot, C., Pottekat, A., Klaassen, Z., Beh, C. T., and Menon, A. K. (2005) Transport of newly synthesized sterol to the sterol–enriched plasma membrane occurs via non–vesicular equilibration, Biochemistry, 44, 5816–5826, doi: https://doi.org/10.1021/bi048296z.

    Article  CAS  PubMed  Google Scholar 

  33. Sullivan, D. P., Ohvo–Rekila, H., Baumann, N. A., Beh, C. T., and Menon, A. K. (2006) Sterol trafficking between the endoplasmic reticulum and plasma membrane in yeast, Biochem. Soc. Trans., 34, 356–358, doi: https://doi.org/10.1042/BST0340356.

    Article  CAS  PubMed  Google Scholar 

  34. Kentala, H., Weber–Boyvat, M., and Olkkonen, V. M. (2016) OSBP–related protein family: mediators of lipid transport and signaling at membrane contact sites, Intern. Rev. Cell. Mol. Biol., 321, 299–340, doi: https://doi.org/10.1016/bs.ircmb.2015.09.006.

    Article  CAS  Google Scholar 

  35. Tong, J., Manik, M. K., Yang, H., and Im, Y. J. (2016) Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family, Biochim. Biophys. Acta, 1861, 928–939, doi: https://doi.org/10.1016/j.bbalip.2016.01.008.

    Article  CAS  PubMed  Google Scholar 

  36. Raychaudhuri, S., Im, Y. J., Hurley, J. H., and Prinz, W. A. (2006) Nonvesicular sterol movement from plasma membrane to ER requires oxysterol–binding protein–related proteins and phosphoinositides, J. Cell Biol., 173, 107–119, doi: https://doi.org/10.1083/jcb.200510084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Saint–Jean, M., Delfosse, V., Douguet, D., Chicanne, G., Payrastre, B., Bourguet, W., Antonny, B., and Drin, G. (2011) Osh4p exchanges sterols for phosphatidylinositol 4–phosphate between lipid bilayers, J. Cell Biol., 195, 965–978, doi: https://doi.org/10.1083/jcb.201104062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loewen, C. J. R., Roy, A., and Levine, T. P. (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP, EMBO J., 22, 2025–2035, doi: https://doi.org/10.1093/emboj/cdg201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levine, T. P., and Munro, S. (2002) Targeting of Golgi–specific pleckstrin homology domains involves both PtdIns 4–kinase–dependent and–independent components, Curr. Biol., 12, 695–704.

    Article  CAS  PubMed  Google Scholar 

  40. Raychaudhuri, S., and Prinz, W. A. (2010) The diverse functions of oxysterol–binding proteins, Ann. Rev. Cell. Dev. Biol., 26, 157–177, doi: https://doi.org/10.1146/annurev.cell-bio.042308.113334.

    Article  CAS  Google Scholar 

  41. Maeda, K., Anand, K., Chiapparino, A., Kumar, A., Poletto, M., Kaksonen, M., and Gavin, A. C. (2013) Interactome map uncovers phosphatidylserine transport by oxysterol–binding proteins, Nature, 501, 257–261, doi: https://doi.org/10.1038/nature12430.

    Article  CAS  PubMed  Google Scholar 

  42. Moser von Filseck, J., Copic, A., Delfosse, V., Vanni, S., Jackson, C. L., Bourguet, W., and Drin, G. (2015) Intracellular transport. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4–phosphate, Science, 349, 432–436, doi: https://doi.org/10.1126/sci-ence.aab1346.

    Google Scholar 

  43. Tian, S., Ohta, A., Horiuchi, H., and Fukuda, R. (2018) Oxysterol–binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast, J. Biol. Chem., 293, 5636–5648, doi: https://doi.org/10.1074/jbc.RA117.000596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beh, C. T., Cool, L., Phillips, J., and Rine, J. (2001) Overlapping functions of the yeast oxysterol–binding protein homologues, Genetics, 157, 1117–1140.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers–Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl–coenzyme A reductase and a cholesterol–lowering agent, Proc. Natl. Acad. Sci. USA, 77, 3957–3961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Woods, R. A. (1971) Nystatin–resistant mutants of yeast: alterations in sterol content, J. Bacteriol., 108, 69–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gatta, A. T., Wong, L. H., Sere, Y. Y., Calderon–Norena, D. M., Cockcroft, S., Menon, A. K., and Levine, T. P. (2015) A new family of StART domain proteins at membrane contact sites has a role in ER–PM sterol transport, eLife, 4, doi: https://doi.org/10.7554/eLife.07253.

    Book  Google Scholar 

  48. Horenkamp, F. A., Valverde, D. P., Nunnari, J., and Reinisch, K. M. (2018) Molecular basis for sterol transport by StART–like lipid transfer domains, EMBO J., 37, doi: https://doi.org/10.15252/embj.201798002.

    Book  Google Scholar 

  49. Murley, A., Sarsam, R. D., Toulmay, A., Yamada, J., Prinz, W. A., and Nunnari, J. (2015) Ltc1 is an ER–localized sterol transporter and a component of ER–mitochondria and ER–vacuole contacts, J. Cell Biol., 209, 539–548, doi: https://doi.org/10.1083/jcb.201502033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong, L. H., and Levine, T. P. (2016) Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing? Biochem. Soc. Trans., 44, 517–527, doi: https://doi.org/10.1042/BST20150275.

    Article  CAS  PubMed  Google Scholar 

  51. Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L., Tate, J., and Punta, M. (2014) Pfam: the protein families database, Nucleic Acids Res., 42, 222–230, doi: https://doi.org/10.1093/nar/gkt1223.

    Article  CAS  Google Scholar 

  52. Knorre, D. A., Ojovan, S. M., Saprunova, V. B., Sokolov, S. S., Bakeeva, L. E., and Severin, F. F. (2008) Mitochondrial matrix fragmentation as a protection mechanism of yeast Saccharomyces cerevisiae, Biochemistry (Moscow), 73, 1254–1259.

    Article  CAS  Google Scholar 

  53. Altmann, K., and Westermann, B. (2005) Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae, Mol. Biol. Cell, 16, 5410–5417, doi: https://doi.org/10.1091/mbc.e05-07-0678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) Role of mitochondria in the pheromone–and amiodarone–induced programmed death of yeast, J. Cell. Biol., 168, 257–269, doi: https://doi.org/10.1083/jcb.200408145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sokolov, S., Knorre, D., Smirnova, E., Markova, O., Pozniakovsky, A., Skulachev, V., and Severin, F. (2006) Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification, Biochim. Biophys. Acta, 1757, 1366–1370, doi: https://doi.org/10.1016/j.bbabio.2006.07.005.

    Article  CAS  PubMed  Google Scholar 

  56. Francois, I. E. J. A., Bink, A., Vandercappellen, J., Ayscough, K. R., Toulmay, A., Schneiter, R. (2009) Membrane rafts are involved in intracellular miconazole accumulation in yeast cells, J. Biol. Chem., 284, 32680–32685, doi: https://doi.org/10.1074/jbc.M109.014571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dos Santos, S. C., and Sa–Correia, I. (2011) A genome–wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine, Mol. Gen. Genom., 286, 333–346, doi: https://doi.org/10.1007/s00438-011-0649-5.

    Article  CAS  Google Scholar 

  58. Murley, A., Yamada, J., Niles, B. J., Toulmay, A., Prinz, W. A., Powers, T., and Nunnari, J. (2017) Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling, J. Cell Biol., 216, 2679–2689, doi: https://doi.org/10.1083/jcb.201610032.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lees, N. D., Skaggs, B., Kirsch, D. R., and Bard, M. (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae–a review, Lipids, 30, 221–226.

    Article  CAS  PubMed  Google Scholar 

  60. Munn, A. L., Heese–Peck, A., Stevenson, B. J., Pichler, H., and Riezman, H. (1999) Specific sterols required for the internalization step of endocytosis in yeast, Mol. Biol. Cell, 10, 3943–3957, doi: https://doi.org/10.1091/mbc.10.11.3943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418, 387–391, doi: https://doi.org/10.1038/nature00935.

    Article  CAS  PubMed  Google Scholar 

  62. Jakubkova, M., Dzugasova, V., Truban, D., Abelovska, L., Bhatia–Kissova, I., Valachovic, M., Klobucnikova, V., Zeiselova, L., Griac, P., Nosek, J., and Tomaska, L. (2016) Identification of yeast mutants exhibiting altered sensitivity to valinomycin and nigericin demonstrate pleiotropic effects of ionophores on cellular processes, PLoS One, 11, e0164175, doi: https://doi.org/10.1371/journal.pone.0164175.

    Book  Google Scholar 

  63. Liu, G., Chen, Y., Faergeman, N. J., and Nielsen, J. (2017) Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses, FEMS Yeast Res., 17, doi: https://doi.org/10.1093/femsyr/fox063.

    Book  Google Scholar 

  64. Contamine, V., and Picard, M. (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast, Microbiol. Mol. Biol. Rev., 64, 281–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., and Beney, L. (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution, 66, 2961–2968, doi: https://doi.org/10.1111/j.1558-5646.2012.01667.x.

    Article  CAS  PubMed  Google Scholar 

  66. Guan, X. L., Souza, C. M., Pichler, H., Dewhurst, G., Schaad, O., Kajiwara, K., Wakabayashi, H., Ivanova, T., Castillon, G. A., Piccolis, M., Abe, F., Loewith, R., Funato, K., Wenk, M. R., and Riezman, H. (2009) Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology, Mol. Biol. Cell, 20, 2083–2095, doi: https://doi.org/10.1091/mbc.E08-11-1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abe, F., and Hiraki, T. (2009) Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1788, 743–752, doi: https://doi.org/10.1016/j.bbamem.2008.12.002.

    Article  CAS  PubMed  Google Scholar 

  68. Leppert, G., McDevitt, R., Falco, S. C. (1990) Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces, Genetics, 125, 13–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaur, R., and Bachhawat, A. K. (1999) The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae, Microbiology, 145, 809–818, doi: https://doi.org/10.1099/13500872-145-4-809.

    CAS  PubMed  Google Scholar 

  70. Desmoucelles, C., Pinson, B., Saint–Marc, C., and Daignan–Fornier, B. (2002) Screening the yeast “disruptome” for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid, J. Biol. Chem., 277, 27036–27044, doi: https://doi.org/10.1074/jbc.M111433200.

    Article  CAS  PubMed  Google Scholar 

  71. Fleming, J. A., Lightcap, E. S., Sadis, S., Thoroddsen, V., Bulawa, C. E., and Blackman, R. K. (2002) Complementary whole–genome technologies reveal the cellular response to proteasome inhibition by PS–341, Proc. Natl. Acad. Sci. USA, 99, 1461–1466, doi: https://doi.org/10.1073/pnas.032516399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Viladevall, L., Serrano, R., Ruiz, A., Domenech, G., Giraldo, J., Barcelo, A., and Arino, J. (2004) Characterization of the calcium–mediated response to alkaline stress in Saccharomyces cerevisiae, J. Biol. Chem., 279, 43614–43624, doi: https://doi.org/10.1074/jbc.M403606200.

    Article  CAS  PubMed  Google Scholar 

  73. Branco, M. R., Marinho, H. S., Cyrne, L., and Antunes, F. (2004) Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae, J. Biol. Chem., 279, 6501–6506.

    Article  CAS  PubMed  Google Scholar 

  74. Montanes, F. M., Pascual–Ahuir, A., and Proft, M. (2011) Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1MAP kinase and the Mot3 and Rox1 transcription factors, Mol. Microbiol., 79, 1008–1023, doi: https://doi.org/10.1111/j.1365-2958.2010.07502.x.

    Article  CAS  PubMed  Google Scholar 

  75. Gazdag, Z., Mate, G., Certik, M., Turmer, K., Virag, E., Pocsi, I., and Pesti, M. (2014) Butyl hydroperoxide–induced differing plasma membrane and oxidative stress processes in yeast strains BY4741 and erg5Δ, J. Basic Microbiol., 54, 50–62, doi: https://doi.org/10.1002/jobm.201300925.

    Article  CAS  Google Scholar 

  76. Bard, M., Lees, N. D., Burrows, L. S., and Kleinhans, F. W. (1978) Differences in crystal violet uptake and cation–induced death among yeast sterol mutants, J. Bacteriol., 135, 1146–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Welihinda, A. A., Beavis, A. D., and Trumbly, R. J. (1994) Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1193, 107–117, doi: https://doi.org/10.1016/0005-2736(94)90339-5.

    Article  CAS  PubMed  Google Scholar 

  78. Kodedova, M., and Sychrova, H. (2015) Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae, PLoS One, 10, e0139306, doi: https://doi.org/10.1371/journal.pone.0139306.

    Google Scholar 

  79. Espenshade, P. J., and Hughes, A. L. (2007) Regulation of sterol synthesis in eukaryotes, Ann. Rev. Genet., 41, 401–427, doi: https://doi.org/10.1146/annurev.genet.41.110306.130315.

    Article  CAS  PubMed  Google Scholar 

  80. Aguilera, F., Peinado, R. A., Millan, C., Ortega, J. M., and Mauricio, J. C. (2006) Relationship between ethanol tolerance, H+–ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains, Intern. J. Food Microbiol., 110, 34–42, doi: https://doi.org/10.1016/j.ijfoodmi-cro.2006.02.002.

    CAS  Google Scholar 

  81. Yang, H., Tong, J., Lee, C. W., Ha, S., Eom, S. H., and Im, Y. J. (2015) Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2, Nat. Commun., 6, 6129, doi: https://doi.org/10.1038/ncomms7129.

    Article  CAS  PubMed  Google Scholar 

  82. Zavrel, M., Hoot, S. J., and White, T. C. (2013) Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae, Eukaryot. Cell, 12, 725–738, doi: https://doi.org/10.1128/EC.00345-12.

    CAS  PubMed  Google Scholar 

  83. Tiwari, R., Koffel, R., and Schneiter, R. (2007) An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae, EMBO J., 26, 5109–5119, doi: https://doi.org/10.1038/sj.emboj.7601924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Choudhary, V., Darwiche, R., Gfeller, D., Zoete, V., Michielin, O., and Schneiter, R. (2014) The caveolin–bind–ing motif of the pathogen–related yeast protein Pry1, a member of the CAP protein superfamily, is required for in vivo export of cholesteryl acetate, J. Lipid Res., 55, 883–894, doi: https://doi.org/10.1194/jlr.M047126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Korber, M., Klein, I., and Daum, G. (2017) Steryl ester synthesis, storage and hydrolysis: a contribution to sterol homeostasis, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1862, 1534–1545, doi: https://doi.org/10.1016/j.bbalip.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  86. Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., Pohl, T. M., Rothstein, R., and Sturley, S. L. (1996) Sterol esterification in yeast: a two–gene process, Science, 272, 1353–1356.

    Article  CAS  PubMed  Google Scholar 

  87. Yu, C., Kennedy, N. J., Chang, C. C., and Rothblatt, J. A. (1996) Molecular cloning and characterization of two iso–forms of Saccharomyces cerevisiae acyl–CoA:sterol acyl–transferase, J. Biol. Chem., 271, 24157–24163.

    Article  CAS  PubMed  Google Scholar 

  88. Zweytick, D., Leitner, E., Kohlwein, S. D., Yu, C., Rothblatt, J., and Daum, G. (2000) Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae, Eur. J. Biochem., 267, 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  89. Koffel, R., and Schneiter, R. (2006) Yeh1 constitutes the major steryl ester hydrolase under heme–deficient conditions in Saccharomyces cerevisiae, Eukaryot. Cell, 5, 1018–1025, doi: https://doi.org/10.1128/EC.00002-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Georgiev, A. G., Sullivan, D. P., Kersting, M. C., Dittman, J. S., Beh, C. T., and Menon, A. K. (2011) Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM, Traffic, 12, 1341–1355, doi: https://doi.org/10.1111/j.1600-0854.2011.01234.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mullner, H., Deutsch, G., Leitner, E., Ingolic, E., and Daum, G. (2005) YEH2/YLR020c encodes a novel steryl ester hydrolase of the yeast Saccharomyces cerevisiae, J. Biol. Chem., 280, 13321–13328, doi: https://doi.org/10.1074/jbc.M409914200.

    Article  CAS  PubMed  Google Scholar 

  92. Jandrositz, A., Petschnigg, J., Zimmermann, R., Natter, K., Scholze, H., Hermetter, A., Kohlwein, S. D., and Leber, R. (2005) The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1735, 50–58, doi: https://doi.org/10.1016/j.bbalip.2005.04.005.

    Article  CAS  PubMed  Google Scholar 

  93. Walther, T. C., and Farese, R. V., Jr. (2012) Lipid droplets and cellular lipid metabolism, Ann. Rev. Biochem., 81, 687–714, doi: https://doi.org/10.1146/annurev-biochem-061009-102430.

    Article  CAS  PubMed  Google Scholar 

  94. Wang, C.–W. (2015) Lipid droplet dynamics in budding yeast, Cell. Mol. Life Sci., 72, 2677–2695, doi: https://doi.org/10.1007/s00018-015-1903-5.

    Article  CAS  PubMed  Google Scholar 

  95. Ueno, K., Nagano, M., Shimizu, S., Toshima, J. Y., and Toshima, J. (2016) Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergosterol, Biochem. Biophys. Res. Commun., 475, 315–321, doi: https://doi.org/10.1016/j.bbrc.2016.05.099.

    CAS  PubMed  Google Scholar 

  96. Tinkelenberg, A. H., Liu, Y., Alcantara, F., Khan, S., Guo, Z., Bard, M., and Sturley, S. L. (2000) Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1, J. Biol. Chem., 275, 40667–40670, doi: https://doi.org/10.1074/jbc.C000710200.

    Article  CAS  PubMed  Google Scholar 

  97. Tong, F., Billheimer, J., Shechtman, C. F., Liu, Y., Crooke, R., Graham, M., Cohen, D. E., Sturley, S. L., and Rader, D. J. (2010) Decreased expression of ARV1 results in cholesterol retention in the endoplasmic reticulum and abnormal bile acid metabolism, J. Biol. Chem., 285, 33632–33641, doi: https://doi.org/10.1074/jbc.M110.165761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Georgiev, A. G., Johansen, J., Ramanathan, V. D., Sere, Y. Y., Beh, C. T., and Menon, A. K. (2013) Arv1 regulates PM and ER membrane structure and homeostasis but is dispensable for intracellular sterol transport, Traffic, 14, 912–921, doi: https://doi.org/10.1111/tra.12082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Heuck, A. P., Moe, P. C., and Johnson, B. B. (2010) The cholesterol–dependent cytolysin family of gram–positive bacterial toxins, Sub–Cell. Biochem., 51, 551–577, doi: https://doi.org/10.1007/978-90-481-8622-8_20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sokolov.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 4, pp. 481–493.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.S., Trushina, N.I., Severin, F.F. et al. Ergosterol Turnover in Yeast: An Interplay between Biosynthesis and Transport. Biochemistry Moscow 84, 346–357 (2019). https://doi.org/10.1134/S0006297919040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919040023

Keywords

Navigation