Skip to main content
Log in

Computer Design of Low-Molecular-Weight Inhibitors of Coagulation Factors

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review discusses main approaches to searching for new low-molecular-weight inhibitors of coagulation factors IIa, Xa, IXa, and XIa and the results of such studies conducted from 2015 to 2018. For each of these factors, several inhibitors with IC50 < 10 nM have been found, some of which are now tested in clinical trials. However, none of the identified inhibitors meets the requirements for an “ideal” anticoagulant, so further studies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADME:

absorption, distribution, metabolism, excretion

ADMET (ADME/Tox):

absorption, distribution, metabolism, excretion, toxicity

ATIII:

antithrombin III

CoMFA:

comparative molecular field analysis

CoMSIA:

com-parative molecular similarity indices analysis

DOACs:

direct oral anticoagulants

DTIs:

direct thrombin inhibitors

LBDD:

ligand-based drug design

PASS:

prediction of activity spectra for substances

QSAR:

quantitative structure-activity relation-ships

SBDD:

structure-based drug design

TF:

tissue factor

TFPI:

tissue factor pathway inhibitor

References

  1. Panteleev, M. A., and Ataullahanov, F. I. (2008) Blood coagulation: biochemical basics, Klin. Onkogematol., 1, 50–62.

    Google Scholar 

  2. Panteleev, M. A., Vasil’ev, S. A., Sinauridze, E. I., Vorob’ev, A. I., and Ataullakhanov, F. I. (2012) Practical Coaguology [in Russian], Prakticheskaya Meditsina, Moscow.

    Google Scholar 

  3. Panteleev, M., Kotova, Ya., and Tokarev, A. (2008) Mechanisms regulating blood coagulation, Terap. Arkhiv, 7, 88–91.

    Google Scholar 

  4. Sinauridze, E. I., Panteleev, M. A., and Ataullakhanov, F. I. (2012) Anticoagulant therapy: basic principles, classic approaches and recent developments, Blood Coagul. Fibrinolysis, 23, 482–493.

    Article  CAS  PubMed  Google Scholar 

  5. Broussalis, E., Anna, W., Trinka, E., Mutzenbach, S., and Killer, M. (2014) Latest developments in anticoagulant drug discovery, Drug Discov. Today, 19, 921–935.

    Article  CAS  PubMed  Google Scholar 

  6. Ahrens, I., Peter, K., Lip, G. Y. H., and Bode, C. (2012) Development and clinical applications of novel oral antico–agulants. Part I. Clinically approved drugs, Discov. Med., 13, 433–443.

    PubMed  Google Scholar 

  7. Roca, B., and Roca, M. (2015) The new oral anticoagu–lants: reasonable alternatives to warfarin, Cleve Clin. J. Med., 82, 847–854.

    Article  PubMed  Google Scholar 

  8. Adcock, D. M., and Gosselin, R. (2015) Direct oral anti–coagulants (DOACs) in the laboratory: 2015 review, Thromb. Res., 136, 7–12.

    Article  CAS  PubMed  Google Scholar 

  9. Mekaj, Y. H., Mekaj, A. Y., Duci, S. B., and Miftari, E. I. (2015) New oral anticoagulants: their advantages and dis–advantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events, Ther. Clin. Risk. Manag., 11, 967–977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gomez–Outes, A., Suarez–Gea, M. L., Lecumberri, R., Terleira–Fernandez, A. I., and Vargas–Castrillon, E. (2015) Direct–acting oral anticoagulants: pharmacology, indica–tions, management, and future perspectives, Eur. J. Haematol., 95, 389–404.

    Article  CAS  PubMed  Google Scholar 

  11. Sinauridze, E., Vuymo, T., and Ataullakhanov, F. (2017) Dabigatran etexilate: a novel oral coagulant, Vopr. Gematol./Onkol. Immunol. Pediatr., 16, 1–15.

    Google Scholar 

  12. Joppa, S. A., Salciccioli, J., Adamski, J., Patel, S., Wysokinski, W., McBane, R., Al–Saffar, F., Esser, H., and Shamoun, F. (2018) A practical review of the emerging direct anticoagulants, laboratory monitoring, and reversal agents, J. Clin. Med., 7, E29.

    Google Scholar 

  13. Pollack, C. V., Reilly, P. A. (2017) Idarucizumab for dabigatran reversal–full cohort analysis, N. Engl. J. Med., 377, 431–441.

    Article  CAS  PubMed  Google Scholar 

  14. Hung, C.–L., and Chen, C.–C. (2014) Computational approaches for drug discovery, Drug Dev. Res., 75, 412–418.

    Article  CAS  PubMed  Google Scholar 

  15. Lill, M. (2013) Virtual screening in drug design, Methods Mol. Biol., 993, 1–12.

    Article  CAS  PubMed  Google Scholar 

  16. Baron, R. (2012) Computational Drug Discovery and Design, Springer New York, NY.

    Book  Google Scholar 

  17. Khel’t’e, Kh.–D., Zippl’, V., Ron’yan, D., and Fol’kers, G. (2015) Molecular Modeling. Theory and Practice [in Russian], BINOM. Laboratoriya Znanii, Moscow.

    Google Scholar 

  18. De Ruyck, J., Brysbaert, G., Blossey, R., and Lensink, M. F. (2016) Molecular docking as a popular tool in drug design, an in silico travel, Adv. Appl. Bioinform. Chem., 9, 1–11.

    PubMed Central  PubMed  Google Scholar 

  19. Chen, Y.–C. (2015) Beware of docking! Trends Pharmacol. Sci., 36, 78–95.

    Article  CAS  PubMed  Google Scholar 

  20. Sulimov, V. B., and Sulimov, A. V. (2017) Docking: Molecular Modeling for Drug Design [in Russian], IIntell, Moscow.

    Google Scholar 

  21. Klimovich, P. V., Shirts, M. R., and Mobley, D. L. (2015) Guidelines for the analysis of free energy calculations, J. Comput. Aided. Mol. Des., 29, 397–411.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sulimov, A. V., Kutov, D. C., Katkova, E. V., Ilin, I. S., and Sulimov, V. B. (2017) New generation of docking programs: supercomputer validation of force fields and quantum–chemical methods for docking, J. Mol. Graph. Model., 78, 139–147.

    Article  CAS  PubMed  Google Scholar 

  23. Raevskiy, O. (2013) Structure–Based Properties of Chemical Compounds and Drugs [in Russian], Dobrsovet, KDU, Moscow.

    Google Scholar 

  24. Raevskiy, O. (2015) Modeling Structure–Property Relationship [in Russian], Dobrsovet, KDU, Moscow.

    Google Scholar 

  25. Filimonov, D., and Poroykov, V. (2006) Predicting a spec–trum of biological properties in organic compounds, Ross. Khim. Zh., 50, 66–75.

    CAS  Google Scholar 

  26. Poroykov, V., Filimonov, D., Gloriozova, T., Lagunin, A., Druzhilovskiy, D., and Stepanchikova, A. (2009) A com–puter–aided prediction of structure–activty relationship: virtual chemogenomics, Inform. Vestnik VOGiS, 13, 137–142.

    Google Scholar 

  27. Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskiy, D. S., Pogodin, P. V., and Poroykov, V. V. (2014) Prediction of structure–activty relationship by using PASS online web resource, Khim. Geterotsikl. Soedin., 3, 483–499.

    Google Scholar 

  28. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 46, 3–26.

    Article  CAS  PubMed  Google Scholar 

  29. Shen, J., Cheng, F., Xu, Y., Li, W., and Tang, Y. (2010) Estimation of ADME properties with substructure pattern recognition, J. Chem. Inf. Model., 50, 1034–1041.

    Article  CAS  PubMed  Google Scholar 

  30. Khakar, P. S. (2010) Two–dimensional (2D) in silico models for absorption, distribution, metabolism, excretion and toxicity (ADME/T) in drug discovery, Curr. Top. Med. Chem., 10, 116–126.

    Google Scholar 

  31. Kujawski, J., Bernard, M. K., Janusz, A., and Kuzma, W. (2012) Prediction of log P: ALOGPS application in medic–inal chemistry education, J. Chem. Educ., 89, 64–67.

    Article  CAS  Google Scholar 

  32. Matter, H., and Schmider, W. (2006) In–silico ADME mod–elling, in Drug Discovery and Evaluation, Safety and Pharmacokinetic Assays (Vogel, H. G., ed.), Springer, Heidelberg, pp. 409–436.

    Google Scholar 

  33. Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., and Jiang, H. (2015) In silico ADME/T modelling for rational drug design, .Q Rev. Biophys., 48, 488–515.

    Article  PubMed  Google Scholar 

  34. Obst, U., Banner, D. W., Weber, L., and Diederich, F. (1997) Molecular recognition at the thrombin active site: structure–based design and synthesis of potent and selective thrombin inhibitors and the X–ray crystal structures of two thrombin–inhibitor complexes, Chem. Biol., 4, 287–295.

    Article  CAS  PubMed  Google Scholar 

  35. Kong, Y., Chen, H., Wang, Y.–Q., Meng, L., and Wei, J.–F. (2014) Direct thrombin inhibitors: patents 2002–2012 (review), Mol. Med. Rep., 9, 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  36. He, L.–W., Dai, W.–C., and Li, N.–G. (2015) Development of orally active thrombin inhibitors for the treatment of thrombotic disorder diseases, Molecules, 20, 11046–11062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mena–Ulecia, K., Tiznado, W., and Caballero, J. (2015) Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM–GBSA, PLoS One, 10, e0142774.

    Google Scholar 

  38. Sinauridze, E. I., Romanov, A. N., Gribkova, I. V., Kondakova, O. A., Surov, S. S., Gorbatenko, A. S., Butylin, A. A., Monakov, M. Y., Bogolyubov, A. A., Kuznetsov, Y. V., Sulimov, V. B., and Ataullakhanov, F. I. (2011) New synthetic thrombin inhibitors: molecular design and experimental verification, PLoS One, 6, e19969.

    Google Scholar 

  39. Lu, T., Tomczuk, B., Illig, C. R., Bone, R., Murphy, L., Spurlino, J., Salemme, F. R., and Soll, R. M. (1998) In vitro evaluation and crystallographic analysis of a new class of selective, non–amide–based thrombin inhibitors, Bioorg. Med. Chem. Lett., 8, 1595–1600.

    Article  CAS  PubMed  Google Scholar 

  40. Hagmann, W. K. (2008) The many roles for fluorine in medicinal chemistry, J. Med. Chem., 51, 4359–4369.

    Article  CAS  PubMed  Google Scholar 

  41. Li, M., and Ren, Y. (2015) Synthesis and biological evalu–ation of some new 2,5–substituted 1–ethyl–1H–benzoimida–zole fluorinated derivatives as direct thrombin inhibitors, Arch. Pharm. (Weinheim), 348, 353–365.

    Article  CAS  Google Scholar 

  42. Chen, H., and Ren, Y. (2015) Design, synthesis, and anti–thrombotic evaluation of some novel fluorinated thrombin inhibitor derivatives, Arch. Pharm. (Weinheim), 348, 408–420.

    Article  CAS  Google Scholar 

  43. Chen, D., Wang, S., Diao, X., Zhu, Q., Shen, H., Han, X., Wang, Y., Gong, G., and Xu, Y. (2015) Design, synthesis and antithrombotic evaluation of novel dabigatran etexilate analogs, a new series of non–peptides thrombin inhibitors, Bioorg. Med. Chem., 23, 7405–7416.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, D., Shi, J., Liu, J., Zhang, X., Deng, X., Yang, Y., Cui, S., Zhu, Q., Gong, G., and Xu, Y. (2017) Design, syn–thesis and antithrombotic evaluation of novel non–peptide thrombin inhibitors, Bioorg. Med. Chem., 25, 458–470.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, W., Lee, S., Choi, J., Park, J.–H., Kim, K.–M., Jee, J.–G., and Bae, J.–S. (2017) Antithrombotic properties of JJ1, a potent and novel thrombin inhibitor, Sci. Rep., 7, 14862.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wang, X., Zhang, Y., Yang, Y., Wu, X., Fan, H., and Qiao, Y. (2017) Identification of berberine as a direct thrombin inhibitor from traditional Chinese medicine through struc–tural, functional and binding studies, Sci. Rep., 7, 44040.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Levy, J. H., Spyropoulos, A. C., Samama, C. M., and Douketis, J. (2014) Direct oral anticoagulants: new drugs and new concepts, JACC Cardiovasc. Interv., 7, 1333–1351.

    Article  CAS  PubMed  Google Scholar 

  48. Patel, N. R., Patel, D. V., Murumkar, P. R., and Yadav, M. R. (2016) Contemporary developments in the discovery of selective factor Xa inhibitors: a review, Eur. J. Med. Chem., 121, 671–698.

    Article  CAS  PubMed  Google Scholar 

  49. Sulimov, V. B., Gribkova, I. V., Kochugaeva, M. P., Katkova, E. V., Sulimov, A. V., Kutov, D. C., Shikhaliev, K. S., Medvedeva, S. M., Krysin, M. Y., Sinauridze, E. I., and Ataullakhanov, F. I. (2015) Application of molecular mod–eling to development of new factor Xa inhibitors, Biomed. Res. Int., 2015, 120802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang, J., Su, G., Ren, Y., and Chen, Y. (2015) Synthesis of 3,4–diaminobenzoyl derivatives as factor Xa inhibitors, Eur. J. Med. Chem., 101, 41–51.

    Article  CAS  PubMed  Google Scholar 

  51. Ishihara, T., Koga, Y., Iwatsuki, Y., and Hirayama, F. (2015) Identification of potent orally active factor Xa inhibitors based on conjugation strategy and application of predictable fragment recommender system, Bioorg. Med. Chem., 23, 277–289.

    Article  CAS  PubMed  Google Scholar 

  52. Xu, C., and Ren, Y. (2015) Molecular modeling studies of [6,6,5] tricyclic fused oxazolidinones as fXa inhibitors using 3D–QSAR, topomer CoMFA, molecular docking and molecular dynamics simulations, Bioorg. Med. Chem. Lett., 25, 4522–4528.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y., Sun, X., Yang, D., Guo, Z., Fan, X., Nie, M., Zhang, F., Liu, Y., Li, Y., Wang, Y., Gong, P., and Liu, Y. (2016) Design, synthesis, and structure–activity relation–ship of novel and effective apixaban derivatives as FXa inhibitors containing 1,2,4–triazole/pyrrole derivatives as P2 binding element, Bioorg. Med. Chem., 24, 5646–5661.

    Article  CAS  PubMed  Google Scholar 

  54. Xing, J., Yang, L., Yang, Y., Zhao, L., Wei, Q., Zhang, J., Zhou, J., and Zhang, H. (2017) Design, synthesis and bio–logical evaluation of novel 2,3–dihydroquinazolin–4(1H)–one derivatives as potential fXa inhibitors, Eur. J. Med. Chem., 125, 411–422.

    Article  CAS  PubMed  Google Scholar 

  55. Pu, Y., Liu, H., Zhou, Y., Peng, J., Li, Y., Li, P., Li, Y., Liu, X., and Zhang, L. (2017) In silico discovery of novel FXa inhibitors by pharmacophore modeling and molecular docking, Nat. Products Bioprospect., 7, 249–256.

    Article  CAS  Google Scholar 

  56. Lagos, C. F., Segovia, G. F., Nunez–Navarro, N., Faundez, M. A., and Zacconi, F. C. (2017) Novel FXa inhibitor iden–tification through integration of ligand–and structure–based approaches, Molecules, 22, E1588.

    Google Scholar 

  57. Sun, X., Hong, Z., Liu, M., Guo, S., Yang, D., Wang, Y., Lan, T., Gao, L., Qi, H., Gong, P., and Liu, Y. (2017) Design, synthesis, and biological activity of novel tetrahy–dropyrazolopyridone derivatives as FXa inhibitors with potent anticoagulant activity, Bioorg. Med. Chem., 25, 2800–2810.

    Article  CAS  PubMed  Google Scholar 

  58. Wang, W., Yuan, J., Fu, X., Meng, F., Zhang, S., Xu, W., Xu, Y., and Huang, C. (2016) Novel anthranilamide–based FXa inhibitors: drug design, synthesis and biological evalu–ation, Molecules, 21, 491.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hu, X., Xiao, Y., Yu, C., Zuo, Y., Yang, W., Wang, X., Gu, B., and Li, J. (2018) Characterization of a novel selective factor Xa inhibitor, DJT06001, which reduces thrombus formation with low risk of bleeding, Eur. J. Pharmacol., 825, 85–91.

    CAS  Google Scholar 

  60. Smiley, D. A., and Becker, R. C. (2014) Factor IXa as a tar–get for anticoagulation in thrombotic disorders and condi–tions, Drug Discov. Today, 19, 1445–1453.

    Article  CAS  PubMed  Google Scholar 

  61. Choudhari, P., and Bhatia, M. (2012) 3D QSAR, pharma–cophore identification studies on series of 4–substituted benzothiophene analogs as factor IXa inhibitors, Pharmacophore, 3, 189–198.

    CAS  Google Scholar 

  62. Wang, S., Beck, R., Blench, T., Burd, A., Buxton, S., Malic, M., Ayele, T., Shaikh, S., Chahwala, S., Chander, C., Holland, R., Merette, S., Zhao, L., Blackney, M., and Watts, A. (2010) Studies of benzothiophene template as potent factor IXa (FIXa) inhibitors in thrombosis, J. Med. Chem., 53, 1465–1472.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, S., Beck, R., Burd, A., Blench, T., Marlin, F., Ayele, T., Buxton, S., Dagostin, C., Malic, M., Joshi, R., Barry, J., Sajad, M., Cheung, C., Shaikh, S., Chahwala, S., Chander, C., Baumgartner, C., Holthoff, H. P., Murray, E., Blackney, M., and Giddings, A. (2010) Structure based drug design: development of potent and selective factor IXa (FIXa) inhibitors, J. Med. Chem., 53, 1473–1482.

    Article  CAS  PubMed  Google Scholar 

  64. Parker, D. L., Jr., Walsh, S., Li, B., Kim, E., Sharipour, A., Smith, C., Chen, Y. H., Berger, R., Harper, B., Zhang, T., Park, M., Shu, M., Wu, J., Xu, J., Dewnani, S., Sherer, E. C., Hruza, A., Reichert, P., Geissler, W., Sonatore, L., Ellsworth, K., Balkovec, J., Greenlee, W., and Wood, H. B. (2015) Rapid development of two factor IXa inhibitors from hit to lead, Bioorg. Med. Chem. Lett., 25, 2321–2325.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, T., Andre, P., Bateman, T. J., Chen, Y.–H. (2015) Development of a novel class of potent and selec–tive FIXa inhibitors, Bioorg. Med. Chem. Lett., 25, 4945–4949.

    Article  CAS  PubMed  Google Scholar 

  66. Meng, D., Andre, P., Bateman, T. J., Berger, R., Chen, Y. H., Desai, K., Dewnani, S., Ellsworth, K., Feng, D., Geissler, W. M., Guo, L., Hruza, A., Jian, T., Li, H., Metzger, J., Parker, D. L., Reichert, P., Sherer, E. C., Smith, C. J., Sonatore, L. M., Tschirret–Guth, R., Wu, J., Xu, J., Zhang, T., Campeau, L. C., Orr, R., Poirier, M., McCabe–Dunn, J., Araki, K., Nishimura, T., Sakurada, I., Hirabayashi, T., and Wood, H. B. (2015) Development of a novel tricyclic class of potent and selective FIXa inhibitors, Bioorg. Med. Chem. Lett., 25, 5437–5443.

    Article  CAS  PubMed  Google Scholar 

  67. Gao, J.–S., Tong, X.–P., Chang, Y.–Q., He, Y.–X., Mei, Y.–D., Tan, P.–H., Guo, J.–L., Liao, G.–C., Xiao, G.–K., Chen, W.–M., Zhou, S.–F., and Sun, P.–H. (2015) Design and prediction of new anticoagulants as a selective factor IXa inhibitor via three–dimensional quantitative struc–ture–property relationships of amidinobenzothiophene derivatives, Drug Des. Devel. Ther., 9, 1743–1759.

    Google Scholar 

  68. Zhang, T., Liu, Y., Yang, X., Martin, G. E., Yao, H., Shang, J., Bugianesi, R. M., Ellsworth, K. P., Sonatore, L. M., Nizner, P., Sherer, E. C., Hill, S. E., Knemeyer, I. W., Geissler, W. M., Dandliker, P. J., Helmy, R., and Wood, H. B. (2016) Definitive metabolite identification coupled with automated ligand identification system (ALIS) technology: a novel approach to uncover structure–activity relation–ships and guide drug design in a factor IXa inhibitor pro–gram, J. Med. Chem., 59, 1818–1829.

    Article  CAS  PubMed  Google Scholar 

  69. Sakurada, I., Endo, T., Hikita, K., Hirabayashi, T., Hosaka, Y., Kato, Y., Maeda, Y., Matsumoto, S., Mizuno, T., Nagasue, H., Nishimura, T., Shimada, S., Shinozaki, M., Taguchi, K., Takeuchi, K., Yokoyama, T., Hruza, A., Reichert, P., Zhang, T., Wood, H. B., Nakao, K., and Furusako, S. (2017) Discovery of novel aminobenzisoxa–zole derivatives as orally available factor IXa inhibitors, Bioorg. Med. Chem. Lett., 27, 2622–2628.

    Article  CAS  PubMed  Google Scholar 

  70. Bane, C. E., and Gailani, D. (2014) Factor XI as a target for antithrombotic therapy, Drug Discov. Today, 19, 1454–1458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Al–Horani, R. A., and Desai, U. R. (2016) Factor XIa inhibitors: a review of the patent literature, Expert. Opin. Ther. Pat., 26, 323–345.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Corte, J. R., Fang, T., Hangeland, J. J., Friends, T. J., Rendina, A. R., Luettgen, J. M., Bozarth, J. M., Barbera, F. A., Rossi, K. A., Wei, A., Ramamurthy, V., Morin, P. E., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2015) Pyridine and pyridinone–based factor XIa inhibitors, Bioorg. Med. Chem. Lett., 25, 925–930.

    Article  CAS  PubMed  Google Scholar 

  73. Pinto, D. J. P., Smallheer, J. M., Corte, J. R., Austin, E. J. D., Wang, C., Fang, T., Smith, L. M. (2015) Structure–based design of inhibitors of coagu–lation factor XIa with novel P1 moieties, Bioorg. Med. Chem. Lett., 25, 1635–1642.

    Article  CAS  PubMed  Google Scholar 

  74. Smith, L. M., Orwat, M. J., Hu, Z., Han, W., Wang, C., Rossi, K. A., Gilligan, P. J., Pabbisetty, K. B., Osuna, H., Corte, J. R., Rendina, A. R., Luettgen, J. M., Wong, P. C., Narayanan, R., Harper, T. W., Bozarth, J. M., Crain, E. J., Wei, A., Ramamurthy, V., Morin, P. E., Xin, B., Zheng, J., Seiffert, D. A., Quan, M. L., Lam, P. Y. S., Wexler, R. R., and Pinto, D. J. P. (2016) Novel phenylalanine derived diamides as factor XIa inhibitors, Bioorg. Med. Chem. Lett., 26, 472–478.

    Article  CAS  PubMed  Google Scholar 

  75. Corte, J. R., Fang, T., Pinto, D. J. P. P., Orwat, M. J., Rendina, A. R., Luettgen, J. M., Rossi, K. A., Wei, A., Ramamurthy, V., Myers, J. E., Sheriff, S., Narayanan, R., Harper, T. W., Zheng, J. J., Li, Y.–X. X., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2016) Orally bioavailable pyridine and pyrimidine–based factor XIa inhibitors: dis–covery of the methyl N–phenyl carbamate P2 prime group, Bioorg. Med. Chem., 24, 2257–2272.

    Article  CAS  PubMed  Google Scholar 

  76. Obaidullah, A. J., and Al–Horani, R. A. (2017) Discovery of chromen–7–yl furan–2–carboxylate as a potent and selec–tive factor XIa inhibitor, Cardiovasc. Hematol. Agents Med. Chem., 15, 40–48.

    Article  CAS  PubMed  Google Scholar 

  77. Pinto, D. J. P., Orwat, M. J., Smith, L. M., Quan, M. L., Lam, P. Y. S., Rossi, K. A., Apedo, A., Bozarth, J. M., Wu, Y., Zheng, J. J., Xin, B., Toussaint, N., Stetsko, P., Gudmundsson, O., Maxwell, B., Crain, E. J., Wong, P. C., Lou, Z., Harper, T. W., Chacko, S. A., Myers, J. E., Sheriff, S., Zhang, H., Hou, X., Mathur, A., Seiffert, D. A., Wexler, R. R., Luettgen, J. M., and Ewing, W. R.(2017) Discovery of a parenteral small molecule coagulation factor XIa inhibitor clinical candidate (BMS–962212), J. Med. Chem., 60, 9703–9723.

    Article  CAS  PubMed  Google Scholar 

  78. Corte, J. R., Fang, T., Osuna, H., Pinto, D. J. P., Rossi, K. A., Myers, J. E., Sheriff, S., Lou, Z., Zheng, J. J., Harper, T. W., Bozarth, J. M., Wu, Y., Luettgen, J. M., Seiffert, D. A., Decicco, C. P., Wexler, R. R., and Quan, M. L. (2017) Structure–based design of macrocyclic factor XIa inhibitors: discovery of the macrocyclic amide linker, J. Med. Chem., 60, 1060–1075.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, C., Corte, J. R., Rossi, K. A., Bozarth, J. M., Wu, Y., Sheriff, S., Myers, J. E., Luettgen, J. M., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2017) Macrocyclic factor XIa inhibitors, Bioorg. Med. Chem. Lett., 27, 4056–4060.

    Article  CAS  PubMed  Google Scholar 

  80. Hu, Z., Wang, C., Han, W., Rossi, K. A., Bozarth, J. M., Wu, Y., Sheriff, S., Myers, J. E., Luettgen, J. M., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2018) Pyridazine and pyridazinone derivatives as potent and selective factor XIa inhibitors, Bioorg. Med. Chem. Lett., 28, 987–992.

    Article  CAS  PubMed  Google Scholar 

  81. Neves, A. R., Correia–da–Silva, M., Sousa, E., and Pinto, M. (2016) Structure–activity relationship studies for multi–target antithrombotic drugs, Future Med. Chem., 8, 2305–2355.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. Ataullakhanov.

Additional information

Russian Text © A. S. Kabankin, E. I. Sinauridze, E. N. Lipets, F. I. Ataullakhanov, 2019, published in Biokhimiya, 2019, Vol. 84, No. 2, pp. 191–211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabankin, A.S., Sinauridze, E.I., Lipets, E.N. et al. Computer Design of Low-Molecular-Weight Inhibitors of Coagulation Factors. Biochemistry Moscow 84, 119–136 (2019). https://doi.org/10.1134/S0006297919020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919020032

Keywords

Navigation