Skip to main content
Log in

Biological basis for amyloidogenesis in Alzheimer’S disease

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Certain cellular proteins normally soluble in the living organism under certain conditions form aggregates with a specific cross-β sheet structure called amyloid. These intraor extracellular insoluble aggregates (fibers or plaques) are hallmarks of many neurodegenerative pathologies including Alzheimer’s disease (AD), Huntington’s disease, Parkinson’s disease, prion disease, and other progressive neurological diseases that develop in the aging human central nervous system. Amyloid diseases (amyloidoses) are widespread in the elderly human population, a rapidly expanding demographic in many global populations. Increasing age is the most significant risk factor for neurodegenerative diseases associated with amyloid plaques. To date, nearly three dozen different misfolded proteins targeting brain and other organs have been identified in amyloid diseases and AD, the most prevalent neurodegenerative amyloid disease affecting over 15 million people worldwide. Here we (i) highlight the latest data on mechanisms of amyloid formation and further discuss a hypothesis on the amyloid cascade as a primary mechanism of AD pathogenesis and (ii) review the evolutionary aspects of amyloidosis, which allow new insight on human-specific mechanisms of dementia development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 75, 333–366.

    Article  CAS  Google Scholar 

  2. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2010) Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis, Amyloid, 17, 101–104.

    Article  CAS  PubMed  Google Scholar 

  3. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease, Neurology, 34, 939–944.

    Article  CAS  PubMed  Google Scholar 

  4. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis, Science, 256, 184–185.

    Article  CAS  PubMed  Google Scholar 

  5. Mohamed, T., Shakeri, A., and Rao, P. P. (2016) Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry, Eur. J. Med. Chem., 113, 258–272.

    Article  CAS  PubMed  Google Scholar 

  6. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G. P., Davies, S. W., Lehrach, H., and Wanker, E. E. (1997) Huntingtinencoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo, Cell, 90, 549–558.

    Article  CAS  PubMed  Google Scholar 

  7. Paulson, H. L., Perez, M. K., and Trottier, Y. (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3, Neuron, 19, 333–344.

    Article  CAS  PubMed  Google Scholar 

  8. Goedert, M., Spillantini, M. G., Del Tredici, K., and Braak, H. (2013) 100 years of Lewy pathology, Nat. Rev. Neurol., 9, 13–24.

    Article  CAS  PubMed  Google Scholar 

  9. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. (1998) a-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies, Proc. Natl. Acad. Sci. USA, 95, 6469–6473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thinakaran, G., and Koo, E. H. (2008) Amyloid precursor protein trafficking, processing, and function, J. Biol. Chem., 283, 29615–29619.

    CAS  Google Scholar 

  11. Ohno-Matsui, K. (2011) Parallel findings in age-related macular degeneration and Alzheimer’s disease, Prog. Retin. Eye Res., 30, 217–238.

    Article  PubMed  Google Scholar 

  12. Askanas, V., and Engel, W. K. (2007) Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis, Curr. Opin. Rheumatol., 19, 550–559.

    Google Scholar 

  13. Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijanian, M. K., and Tsai, L. H. (2003) APP processing is regulated by cytoplasmic phosphorylation, J. Cell Biol., 163, 83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease, Science, 245, 417–420.

    Article  CAS  PubMed  Google Scholar 

  15. Sun, X., Chen, W. D., and Wang, Y. D. (2015) ß-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease, Front. Pharmacol., 30, 221.

    Google Scholar 

  16. Gandy, S., Caporaso, G., Buxbaum, J., Frangione, B., and Greengard, P. (1994) APP proceßsing, Aß-amyloidogenesis, and the pathogenesis of Alzheimer’s disease, Neurobiol. Aging, 15, 253–256.

    CAS  PubMed  Google Scholar 

  17. Haass, C., Schlossmacher, M. G., Hung, A. Y., VigoPelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., and Teplow, D. B. (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism, Nature, 359, 322–325.

    Article  CAS  PubMed  Google Scholar 

  18. Walsh, D. M., and Selkoe, D. J. (2007) A beta oligomers -a decade of discovery, J. Neurochem., 101, 1172–1184.

    Article  CAS  PubMed  Google Scholar 

  19. Askanas, V., McFerrin, J., Baque, S., Alvarez, R. B., Sarkozi, E., and Engel, W. K. (1996) Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle, Proc. Natl. Acad. Sci. USA, 93, 1314–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., and LaFerla, F. M. (2005) Intraneuronal Aß causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice, Neuron, 45, 675–688.

    Article  CAS  PubMed  Google Scholar 

  21. Rajendran, L., Honsho, M., Zahn, T. R., Keller, P., Geiger, K. D., Verkade, P., and Simons, K. (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes, Proc. Natl. Acad. Sci. USA, 103, 11172–11177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Revesz, T., Holton, J. L., Lashley, T., Plant, G., Frangione, B., Rostagno, A., and Ghiso, J. (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies, Acta Neuropathol., 118, 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratnayaka, J. A., Serpell, L. C., and Lotery, A. J. (2015) Dementia of the eye: the role of amyloid beta in retinal degeneration, Eye (London), 29, 1013–1026.

    Article  CAS  Google Scholar 

  24. Hoh Kam, J., Lenassi, E., and Jeffery, G. (2010) Viewing ageing eyes: diverse sites of amyloid beta accumulation in the ageing mouse retina and the up-regulation of macrophages, PLoS One, 5, 13127.

    Article  CAS  Google Scholar 

  25. McKay, G. J., Patterson, C. C., Chakravarthy, U., Dasari, S., Klaver, C. C., Vingerling, J. R., Ho, L., De Jong, P. T., Fletcher, A. E., Young, I. S., Seland, J. H., Rahu, M., Soubrane, G., Tomazzoli. L., Topouzis, F., Vioque, J., Hingorani, A. D., Sofat, R., Dean, M., Sawitzke, J., Seddon, J. M., Peter, I., Webster, A. R., Moore, A. T., Yates, J. R., Cipriani, V., Fritsche, L. G., Weber, B. H., Keilhauer, C. N., Lotery, A. J., Ennis, S., Klein, M. L., Francis, P. J., Stambolian, D., Orlin, A., Gorin, M. B., Weeks, D. E., Kuo, C. L., Swaroop, A., Othman, M., Kanda, A., Chen, W., Abecasis, G. R., Wright, A. F., Hayward, C., Baird, P. N., Guymer, R. H., Attia, J., Thakkinstian, A., and Silvestri, G. (2011) Evidence of association of ApoE with age-related macular degeneration: a pooled analysis of 15 studies, Hum. Mutat., 32, 1407–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L. D., and Soto, C. (2012) De novo induction of amyloid-ß deposition in vivo, Mol. Psychiatry, 17, 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  27. Jaunmuktane, Z., Mead, S., Ellis, M., Wadsworth, J. D., Nicoll, A. J., Kenny, J., Launchbury, F., Linehan, J., Richard-Loendt, A., Walker, A. S., Rudge, P., Collinge, J., and Brandner, S. (2015) Evidence for human transmißsion of amyloid-ß pathology and cerebral amyloid angiopathy, Nature, 525, 247–250.

    Article  CAS  PubMed  Google Scholar 

  28. Um, J. W., Nygaard, H. B., Heißs, J. K., Kostylev, M. A., Stagi, M., Vortmeyer, A., Wisniewski, T., Gunther, E. C., and Strittmatter, S. M. (2012) Alzheimer amyloid-ß oligomer bound to postsynaptic prion protein activates Fyn to impair neurons, Nat. Neurosci., 15, 1227–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peters, C., Espinoza, M. P., Gallegos, S., Opazo, C., and Aguayo, L. G. (2015) Alzheimer’s Aß interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity, Neurobiol. Aging, 36, 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  30. Haaßs, C., Hung, A. Y., Schlossmacher, M. G., Teplow, D. B., and Selkoe, D. J. (1993) ß-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms, J. Biol. Chem., 268, 3021–3024.

    Google Scholar 

  31. Lin, M. T., and Beal, M. F. (2006) Alzheimer’s APP mangles mitochondria, Nat. Med., 12, 1241–1243.

    Article  CAS  PubMed  Google Scholar 

  32. Copanaki, E., Chang, S., Vlachos, A., Tschape, J. A., Muller, U. C., Kogel, D., and Deller, T. (2010) sAPPa antagonizes dendritic degeneration and neuron death triggered by proteasomal stress, Mol. Cell. Neurosci., 44, 386393.

    Article  CAS  Google Scholar 

  33. Milosch, N., Tanriover, G., Kundu, A., Rami, A., Francois, J. C., Baumkotter, F., Weyer, S. W., and Samanta, A. (2014) Holo-APP and G-protein-mediated signaling are required for sAPPa-induced activation of the Akt survival pathway, Cell Death Dis., 5, 1391.

    Article  CAS  Google Scholar 

  34. Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke, C., Blessing, M., Flamez, P., Dequenne, A., Godaux, E., Van Leuven, F., and Fahrenholz, F. (2004) A disintegrinmetalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model, J. Clin. Invest., 113, 1456–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, M., Suh, J., Romano, D., Truong, M. H., Mullin, K., Hooli, B., Norton, D., Tesco, G., Elliott, K., Wagner, S. L., Moir, R. D., Becker, K. D., and Tanzi, R. E. (2009) Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate a-secretase activity, Hum. Mol. Genet., 18, 3987–3996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colombo, A., Wang, H., Kuhn, P. H., Page, R., Kremmer, E., Dempsey, P. J., Crawford, H. C., and Lichtenthaler, S. F. (2013) Constitutive aand ß-secretase cleavages of the amyloid precursor protein are partially coupled in neurons, but not in frequently used cell lines, Neurobiol. Dis., 49, 137–147.

    CAS  PubMed  Google Scholar 

  37. Endres, K., Fahrenholz, F., Lotz, J., Hiemke, C., Teipel, S., Lieb, K., Tuscher, O., and Fellgiebel, A. (2014) Increased CSF APPs-a levels in patients with Alzheimer disease treated with acitretin, Neurology, 83, 1930–1935.

    Article  CAS  PubMed  Google Scholar 

  38. Saftig, P., and Lichtenthaler, S. F. (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain, Prog. Neurobiol., 135, 1–20.

    Article  CAS  PubMed  Google Scholar 

  39. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE, Science, 286, 735–741.

    Article  CAS  PubMed  Google Scholar 

  40. Fukumori, A., Okochi, M., Tagami, S., Jiang, J., Itoh, N., Nakayama, T., Yanagida, K., Ishizuka- Katsura, Y., Morihara, T., Kamino, K., Tanaka, T., Kudo, T., Tanii, H., Ikuta, A., Haass, C., and Takeda, M. (2006) Presenilindependent gamma-secretase on plasma membrane and endosomes is functionally distinct, Biochemistry, 45, 49074914.

    Article  CAS  Google Scholar 

  41. Holler, C. J., Webb, R. L., Laux, A. L., Beckett, T. L., Niedowicz, D. M., Ahmed, R. R., Liu, Y., Simmons, C. R., Dowling, A. L., Spinelli, A., Khurgel, M., Estus, S., Head, E., Hersh, L. B., and Murphy, M. P. (2012) BACE2 expression increases in human neurodegenerative disease, Am. J. Pathol., 180, 337–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan, R., Munzner, J. B., Shuck, M. E., and Bienkowski, M. J. (2001) BACE2 functions as an alternative alpha-secretase in cells, J. Biol. Chem., 276, 34019–34027.

    Article  CAS  PubMed  Google Scholar 

  43. Rochin, L., Hurbain, I., Serneels, L., Fort, C., Watt, B., Leblanc, P., Marks, M. S., De Strooper, B., Raposo, G., and Van Niel, G. (2013) BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells, Proc. Natl. Acad. Sci. USA, 110, 10658–10663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ceglia, I., Reitz, C., Gresack, J., Ahn, J. H., Bustos, V., Bleck, M., Zhang, X., Martin, G., Simon, S. M., Nairn, A. C., Greengard, P., and Kim, Y. (2015) APP intracellular domain-WAVE1 pathway reduces amyloid-ß production, Nat. Med., 21, 1054–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takami, M., Nagashima, Y., Sano, Y., Ishihara, S., Morishima- Kawashima, M., Funamoto, S., and Ihara, Y. (2009) Gamma-secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment, J. Neurosci., 29, 130421.

    Article  CAS  Google Scholar 

  46. Willem, M., Tahirovic, S., Busche, M. A., Ovsepian, S. V., Chafai, M., Kootar, S., Hornburg, D., Evans, L. D., Moore, S., Daria, A., Hampel, H., Muller, V., Giudici, C., Nuscher, B., Wenninger- Weinzierl, A., Kremmer, E., Heneka, M. T., Thal, D. R., Giedraitis, V., Lannfelt, L., Muller, U., Livesey, F. J., Meissner, F., Herms, J., Konnerth, A., Marie, H., and Haass, C. (2015) ?-Secretase processing of APP inhibits neuronal activity in the hippocampus, Nature, 526, 443–447.

    Article  CAS  PubMed  Google Scholar 

  47. Haass, C., and Selkoe, D. J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell. Biol., 8, 101–112.

    Article  CAS  PubMed  Google Scholar 

  48. Giaccone, G., Tagliavini, F., Linoli, G., Bouras, C., Frigerio, L., Frangione, B., and Bugiani, O. (1989) Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques, Neurosci. Lett., 97, 232–238.

    Article  CAS  PubMed  Google Scholar 

  49. Jarrett, J. T., and Lansbury, P. T. (1993) Seeding “onedimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73, 1055–1058.

  50. Ow, S. Y., and Dunstan, D. E. (2014) A brief overview of amyloids and Alzheimer’s disease, Protein Sci., 23, 13151331.

    Article  CAS  Google Scholar 

  51. Simmons, L. K., May, P. C., Tomaselli, K. J., Rydel, R. E., Fuson, K. S., Brigham, E. F., Wright, S., Lieberburg, I., Becker, G. W., and Brems, D. N. (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro, Mol. Pharmacol., 45, 373–379.

    CAS  PubMed  Google Scholar 

  52. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease, Ann. Neurol., 46, 860–866.

    Article  CAS  PubMed  Google Scholar 

  53. Klyubin, I., Betts, V., Welzel, A. T., Blennow, K., Zetterberg, H., Wallin, A., Lemere, C. A., Cullen, W. K., Peng, Y., Wisniewski, T., Selkoe, D. J., Anwyl, R., Walsh, D. M., and Rowan, M. J. (2008) Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization, J. Neurosci., 28, 4231–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., and James, L. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease, Nature, 349, 704–706.

    Article  CAS  PubMed  Google Scholar 

  55. Raux, G., Guyant-Marechal, L., Martin, C., Bou, J., Penet, C., Brice, A., Hannequin, D., Frebourg, T., and Campion, D. (2005) Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update, J. Med. Genet., 42, 793–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scheuner, D., Eckman, C., and Jensen, M. (2007) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease, Nat. Med., 2, 864–870.

    Article  Google Scholar 

  57. Gyure, K. A., Durham, R., Stewart, W. F., Smialek, J. E., and Troncoso, J. C. (2001) Intraneuronal Abeta-amyloid precedes development of amyloid plaques in Down syndrome, Arch. Pathol. Lab. Med., 125, 489–492.

    CAS  PubMed  Google Scholar 

  58. Lemere, C. A., Blusztajn, J. K., Yamaguchi, H., Wisniewski, T., Saido, T. C., and Selkoe, D. J. (1996) Sequence of deposition of heterogeneous amyloid betapeptides and ApoE in Down syndrome: implications for initial events in amyloid plaque formation, Neurobiol. Dis., 3, 16–32.

    Article  CAS  PubMed  Google Scholar 

  59. Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriè re, A., Vital, A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., Dubas, F., Frebourg, T., and Campion, D. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy, Nat. Genet., 38, 24–26.

    Article  CAS  PubMed  Google Scholar 

  60. Kasuga, K., Shimohata, T., Nishimura. A., Shiga, A., Mizuguchi, T., Tokunaga, J., Ohno, T., Miyashita, A., Kuwano, R., Matsumoto, N., Onodera, O., Nishizawa, M., and Ikeuchi, T. (2009) Identification of independent APP locus duplication in Japanese patients with earlyonset Alzheimer disease, J. Neurol. Neurosurg. Psychiatry, 80, 1050–1052.

    Article  CAS  PubMed  Google Scholar 

  61. Di Fede, G., Catania, M., Morbin, M., Rossi, G., Suardi, S., Mazzoleni, G., Merlin, M., Giovagnoli, A. R., Prioni, S., Erbetta, A., Falcone, C., Gobbi, M., Colombo, L., Bastone, A., Beeg, M., Manzoni, C., Francescucci, B., Spagnoli, A., Cantù, L., Del Favero, E., Levy, E., Salmona, M., and Tagliavini, F. (2009) A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis, Science, 323, 1473–1477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., Jö nsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. T., Kong, A., Thorsteinsdottir, U., Watts, R. J., and Stefansson, K. (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline, Nature, 488, 9699.

    Article  CAS  Google Scholar 

  63. Chen, M. (2015) The maze of APP processing in Alzheimer’s disease: where did we go wrong in reasoning? Front. Cell. Neurosci., 9, 186.

    PubMed  PubMed Central  Google Scholar 

  64. Li, H., Wolfe, M. S., and Selkoe, D. J. (2009) Toward structural elucidation of the secretase complex, Structure, 17, 326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Da Silva, H. A., Haines, J. L., Perkicak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. H. (1995) Cloning of a gene bearing missense mutations in early onset familial Alzheimer’s disease, Nature, 375, 754760.

    Article  Google Scholar 

  66. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., and Tsuda, T. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene, Nature, 376, 775–778.

    Article  CAS  PubMed  Google Scholar 

  67. Hill, J. M., Clement, C., Pogue, A. I., Bhattacharjee, S., Zhao, Y., and Lukiw, W. J. (2014) Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD), Front. Aging Neurosci., 6, 127.

    PubMed  PubMed Central  Google Scholar 

  68. Hammer, N. D., Wang, X., McGuffie, B. A., and Chapman, M. R. (2008) Amyloids: friend or foe? J. Alzheimer’s Dis., 13, 407–419.

    CAS  Google Scholar 

  69. Nizhnikov, A. A., Antonets, K. S., and Inge-Vechtomov, S. G. (2015) Amyloids: from pathogenesis to function, Biochemistry (Moscow), 80, 1127–1244.

    Article  CAS  Google Scholar 

  70. Sheng, J. G., Bora, S. H., Xu, G., Borchelt, D. R., Price, D. L., and Koliatsos, V. E. (2003) Lipopolysaccharide-inducedneuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice, Neurobiol. Dis., 14, 133–145.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, Y., Dua, P., and Lukiw, W. J. (2015) Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD), J. Alzheimer’s Dis. Parkinsonism, 5, 177.

    CAS  Google Scholar 

  72. Kumar, D. K., Choi, S. H., Washicosky, K. J., Eimer, W. A., Tucker, S., Ghofrani, J., Lefkowitz, A., McColl, G., Goldstein, L. E., Tanzi, R. E., and Moir, R. D. (2016) Amyloid-ß peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease, Sci. Transl. Med., 8, 340ra72.

    Article  Google Scholar 

  73. Lian, H. Y., Jiang, Y., Zhang, H., Jones, G. W., and Perrett, S. (2006) The yeast prion protein Ure2: structure, function and folding, Biochim. Biophys. Acta, 1764, 535–545.

    Article  CAS  PubMed  Google Scholar 

  74. Stansfield, I., Jones, K. M., Kushnirov, V. V., Dagkesamanskaya, A. R., Poznyakovski, A. I., Paushkin, S. V., Nierras, C. R., Cox, B. S., Ter- Avanesyan, M. D., and Tuite, M. F. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae, EMBO J., 14, 4365–4373.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Heinrich, S. U., and Lindquist, S. (2011) Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB), Proc. Natl. Acad. Sci. USA, 108, 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McGlinchey, R., Shewmaker, F., McPhie, P., Monterroso, B., Thurber, K., and Wicknera, R. (2009) The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis, Proc. Natl. Acad. Sci. USA, 106, 13731–13736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P. R., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science, 325, 328–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ranganathan, S., Singh, P. K., Singh, U., Singru, P. S., Padinhateeri, R., and Maji, S. K. (2012) Molecular interpretation of ACTH-ß-endorphin coaggregation: relevance to secretory granule biogenesis, PLoS One, 7, 31924.

    Article  CAS  Google Scholar 

  79. Anoop, A., Ranganathan, S., Das Dhaked, B., Jha, N. N., Pratihar, S., Ghosh, S., Sahay, S., Kumar, S., Das, S., Kombrabail, M., Agarwal, K., Jacob, R. S., Singru, P., Bhaumik, P., Padinhateeri, R., Kumar, A., and Maji, S. K. (2014) Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: relevance to its storage and secretion, J. Biol. Chem., 289, 16884–16903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Williams, T. L., and Serpell, L. C. (2011) Membrane and surface interactions of Alzheimer’s Aß peptide -insights into the mechanism of cytotoxicity, FEBS J., 278, 3905–3917.

    Article  CAS  PubMed  Google Scholar 

  81. Brender, J. R., Salamekh, S., and Ramamoorthy, A. (2012) Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective, Acc. Chem. Res., 45, 454–462.

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, Z., and Lee, J. C. (2014) Lysophospholipid-containing membranes modulate the fibril formation of the repeat domain of a human functional amyloid, pmel17, J. Mol. Biol., 426, 4074–4086.

    Article  CAS  PubMed  Google Scholar 

  83. Singh, S., Trikha, S., Bhowmick, D. C., Sarkar, A. A., and Jeremic, A. M. (2015) Role of cholesterol and phospholipids in amylin misfolding, aggregation and etiology of islet amyloidosis, Adv. Exp. Med. Biol., 855, 95–116.

    Article  PubMed  Google Scholar 

  84. Leißsring, M. A., and Turner, A. J. (2013) Regulation of distinct pools of amyloid ß-protein by multiple cellular proteases, Alzheimer’s Res. Ther., 5, 37.

    Article  Google Scholar 

  85. Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., Yarasheski, K. E., and Bateman, R. J. (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease, Science, 330, 1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shirotani, K., Tsubuki, S., Iwata, N., Takaki, Y., Harigaya, W., Maruyama, K., Kiryu- Seo, S., Kiyama, H., Iwata, H., Tomita, T., Iwatsubo, T., and Saido, T. C. (2001) Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphanand phosphoramidon-sensitive endopeptidases, J. Biol. Chem., 276, 21895–21901.

    Article  CAS  PubMed  Google Scholar 

  87. Maruyama, M., Higuchi, M., Takaki, Y., Matsuba, Y., Tanji, H., Nemoto, M., Tomita, N., Matsui, T., Iwata, N., Mizukami, H., Muramatsu, S., Ozawa, K., Saido, T. C., Arai, H., and Sasaki, H. (2005) Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease, Ann. Neurol., 57, 832–842.

    Article  CAS  PubMed  Google Scholar 

  88. Hellstrom-Lindahl, E., Ravid, R., and Nordberg, A. (2008) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with Aß levels, Neurobiol. Aging, 29, 210–221.

    Article  CAS  PubMed  Google Scholar 

  89. Hemming, M. L., Patterson, M., Reske-Nielsen, C., Lin, L., Isacson, O., and Selkoe, D. J. (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease, PLoS Med., 4, 262.

    Article  CAS  Google Scholar 

  90. Hook, G., Yu, J., Toneff, T., Kindy, M., and Hook, V. (2014) cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer’s disease therapeutic, J. Alzheimer’s Dis., 41, 129–149.

    CAS  Google Scholar 

  91. Hook, V. Y., Kindy, M., Reinheckel, T., Peters, C., and Hook, G. (2009) Genetic cathepsin B deficiency reduces beta amyloid in transgenic mice expressing human wildtype amyloid precursor protein, Biochem. Biophys. Res. Commun., 386, 284–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bhattacharjee, S., Zhao, Y., Dua, P., Rogaev, E. I., and Lukiw, W. J. (2016) microRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration, PLoS One, 11, e0150211.

    Google Scholar 

  93. Zhao, Y., Bhattacharjee, S., Jones, B. M., Dua, P., Alexandrov, P. N., Hill, J. M., and Lukiw, W. J. (2013) Regulation of TREM2 expression by an NF-?B-sensitive miRNA-34a, Neuroreport, 24, 318–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jones, B. M., Bhattacharjee, S., Dua, P., Hill, J. M., Zhao, Y., and Lukiw, W. J. (2014) Regulating amyloidogenesis through the natural triggering receptor expressed in myeloid/microglial cells 2 (TREM2), Front. Cell. Neurosci., 8, 94.

    PubMed  PubMed Central  Google Scholar 

  95. Zhao, Y., and Lukiw, W. J. (2015) Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD), J. Nat. Sci., 1, e138.

    Google Scholar 

  96. Ma, J., Yee, A., Brewer, H. B., Das, S., and Potter, H. (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments, Nature, 372, 92–94.

    Article  CAS  PubMed  Google Scholar 

  97. Veerhuis, R., Boshuizen, R. S., and Familian, A. (2005) Amyloid associated proteins in Alzheimer’s and prion disease, Curr. Drug Targets CNS Neurol. Disord., 4, 235–248.

    Article  CAS  PubMed  Google Scholar 

  98. DeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. W., Harmony, J. A., Aronow, B. J., Bales, K. R., Paul, S. M., and Holtzman, D. M. (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo, Neuron, 41, 193–202.

    Article  CAS  PubMed  Google Scholar 

  99. Nielsen, H. M., Mulder, S. D., Belien, J. A., Musters, R. J., Eikelenboom, P., and Veerhuis, R. (2010) Astrocytic A beta 1-42 uptake is determined by Abeta-aggregation state and the presence of amyloid-associated proteins, Glia, 58, 1235–1246.

    PubMed  Google Scholar 

  100. Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., Jones, N., Thomas, C., Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Morgan, K., Brown, K. S., Passmore, P. A., Craig, D., McGuinness, B., Todd, S., Holmes, C., Mann, D., Smith, A. D., Love, S., Kehoe, P. G., Hardy, J., Mead, S., Fox, N., Rossor, M., Collinge, J., Maier, W., Jessen, F., Schürmann, B., Van den Bussche, H., Heuser, I., and Williams, J. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, Nat. Genet., 41, 10881093.

    Google Scholar 

  101. Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., Combarros, O., Zelenika, D., Bullido, M. J., Tavernier, B., Letenneur, L., Bettens, K., Berr, C., Pasquier, F., Fievet, N., Barberger-Gateau, P., Engelborghs, S., De Deyn, P., Mateo, I., Franck, A., Helisalmi, S., Porcellini, E., Hanon, O., European Alzheimer’s Disease Initiative Investigators, De Pancorbo, M. M., Lendon, C., Dufouil, C., Jaillard, C., Leveillard, T., Alvarez, V., Bosco, P., Mancuso, M., Panza, F., Nacmias, B., Bossu, P., Piccardi, P., Annoni, G., Seripa, D., Galimberti, D., Hannequin, D., Licastro, F., Soininen, H., Ritchie, K., Blanche, H., Dartigues, J. F., Tzourio, C., Gut, I., Van Broeckhoven, C., Alperovitch, A., Lathrop, M., and Amouyel, P. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease, Nat. Genet., 41, 10941099.

    Article  CAS  Google Scholar 

  102. Golenkina, S. A., Gol’tsov, A. Iu., Kuznetsova, I. L., Grigorenko, A. P., Andreeva, T. V., Reshetov, D. A., Kunizheva, S. S., Shagam, L. I., Morozova, I. Iu., Goldenkova-Pavlova, I. V., Shimshilashvili, Kh., Viacheslavova, A. O., Faskhutdinova, G., Gareeva, A. E., Zainullina, A. G., Khusnutdinova, E. K., Puzyrev, V. P., Stepanov, V. A., Kolotvin, A. V., Samokhodskaia, L. M., Selezneva, N. D., Gavrilova, S. I., and Rogaev, E. I. (2010) Analysis of clusterin gene (CLU/APOJ) polymorphism in Alzheimer’s disease patients and in normal cohorts from Russian populations, Mol. Biol. (Moscow), 44, 620–626.

    Article  CAS  Google Scholar 

  103. Roses, A. D. (1996) apolipoprotein E alleles as risk factors in Alzheimer’s disease, Annu. Rev. Med., 47, 387–400.

    Article  CAS  PubMed  Google Scholar 

  104. Kim, J., Basak, J. M., and Holtzman, D. M. (2009) The role of apolipoprotein E in Alzheimer’s disease, Neuron, 63, 287–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., Fishman, C. E., DeLong, C. A., Piccardo, P., Petegnief, V., Ghetti, B., and Paul, S. M. (1999) apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 96, 15233–15238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fagan, A. M., Watson, M., Parsadanian, M., Bales, K. R., Paul, S. M., and Holtzman, D. M. (2002) Human and murine ApoE markedly alters Aß metabolism before and after plaque formation in a mouse model of Alzheimer’s disease, Neurobiol. Dis., 9, 305–318.

    Article  CAS  PubMed  Google Scholar 

  107. Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K. R., and Paul, S. M. (2004) apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides, Nat. Med., 10, 719–726.

    Article  CAS  PubMed  Google Scholar 

  108. Dodart, J. C., Marr, R. A., Koistinaho, M., Gregersen, B. M., Malkani, S., Verma, I. M., and Paul, S. M. (2005) Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 102, 1211–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W., and Taylor, J. M. (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system, J. Clin. Invest., 76, 1501–1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Metzger, R. E., La Du, M. J., Pan, J. B., Getz, G. S., Frail, D. E., and Falduto, M. T. (1996) Neurons of the human frontal cortex display apolipoprotein E immunoreactivity: implications for Alzheimer’s disease, J. Neuropathol. Exp. Neurol., 55, 372–380.

    Article  CAS  PubMed  Google Scholar 

  111. Xu, P. T., Schmechel, D., Rothrock-Christian, T., Burkhart, D. S., Qiu, H. L., Popko, B., Sullivan, P., Maeda, N., Saunders, A. M., Roses, A. D., and Gilbert, J. R. (1996) Human apolipoprotein E2, E3 and E4 isoformspecific transgenic mice: human-like pattern of glial and neuronal immunoreactivity in central nervous system not observed in wild-type mice, Neurobiol. Dis., 3, 229–245.

    CAS  Google Scholar 

  112. Soulie, C., Mitchell, V., Dupont-Wallois, L., ChartierHarlin, M. C., Beauvillain, J. C., Delacourte, A., and Caillet-Boudin, M. L. (1999) Synthesis of apolipoprotein E (ApoE) mRNA by human neuronal-type SK N SH-SY 5Y cells and its regulation by nerve growth factor and ApoE, Neurosci. Lett., 265, 147–150.

    Article  CAS  PubMed  Google Scholar 

  113. Harris, F. M., Tesseur, I., Brecht, W. J., Xu, Q., Mullendorff, K., Chang, S., Wyss-Coray, T., Mahley, R. W., and Huang, Y. (2004) Astroglial regulation of apolipoprotein E expression in neuronal cells: implications for Alzheimer’s disease, J. Biol. Chem., 279, 3862–3868.

    Article  CAS  PubMed  Google Scholar 

  114. Mahley, R. W., Weisgraber, K. H., and Huang, Y. (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS, J. Lipid Res., 50, 183–188.

    Google Scholar 

  115. Harris, F. M., Brecht, W. J., Xu, Q., Tesseur, I., Kekonius, L., Wyss- Coray, T., Fish, J. D., Masliah, E., Hopkins, P. C., Scearce- Levie, K., Weisgraber, K. H., Mucke, L., Mahley, R. W., and Huang, Y. (2003) Carboxyl-terminaltruncated apolipoprotein E4 causes Alzheimer’s diseaselike neurodegeneration and behavioral deficits in transgenic mice, Proc. Natl. Acad. Sci. USA, 100, 10966–10971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, Y. (2010) Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease, Trends Mol. Med., 16, 287–294.

    Article  CAS  PubMed  Google Scholar 

  117. Lockhart, A., Lamb, J. R., Osredkar, T., Sue, L. I., Joyce, J. N., Ye, L., Libri, V., Leppert, D., and Beach, T. G. (2007) PIB is a non-specific imaging marker of amyloidbeta peptide-related cerebral amyloidosis, Brain, 130, 2607–2615.

    Article  CAS  PubMed  Google Scholar 

  118. West, M. J., Coleman, P. D., Flood, D. G., and Troncoso, J. C. (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease, Lancet, 344, 769–772.

    Article  CAS  PubMed  Google Scholar 

  119. Braak, H., Braak, E., and Kalus, P. (1989) Alzheimer’s disease: areal and laminar pathology in the occipital isocortex, Acta Neuropathol., 77, 494–506.

    Article  CAS  PubMed  Google Scholar 

  120. Morrison, J. H., and Hof, P. R. (2007) Life and death of neurons in the aging cerebral cortex, Int. Rev. Neurobiol., 81, 41–57.

    Article  CAS  PubMed  Google Scholar 

  121. Hanks, S. D., and Flood, D. G. (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer’s disease. I. CA1 of hippocampus, Brain Res., 540, 63–82.

    Article  CAS  PubMed  Google Scholar 

  122. Frisoni, G. B., Ganzola, R., Canu, E., Rub, U., Pizzini, F. B., Alessandrini, F., Zoccatelli, G., Beltramello, A., Caltagirone, C., and Thompson, P. M. (2008) Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla, Brain, 131, 3266–3276.

    Article  PubMed  Google Scholar 

  123. Fukuyama, R., Mizuno, T., Mori, S., Nakajima, K., Fushiki, S., and Yanagisawa, K. (2000) Age-dependent change in the levels of Aß40 and Aß42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aß42 to Aß40 level in cerebrospinal fluid from Alzheimer’s disease patients, Eur. Neurol., 43, 155–160.

    CAS  Google Scholar 

  124. Miners, J. S., Van Helmond, Z., Kehoe, P. G., and Love, S. (2010) Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulindegrading enzyme and angiotensin-converting enzyme, Brain Pathol., 20, 794–802.

    CAS  Google Scholar 

  125. Fukumoto, H., Rosene, D. L., Moss, M. B., Raju, S., Hyman, B. T., and Irizarry, M. C. (2004) Miners JBetasecretase activity increases with aging in human, monkey, and mouse brain, Am. J. Pathol., 164, 719–725.

    CAS  PubMed  Google Scholar 

  126. Cheng, X., He, P., Lee, T., Yao, H., Li, R., and Shen, Y. (2014) High activities of BACE1 in brains with mild cognitive impairment, Am. J. Pathol., 184, 141–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, M., and Nguyen, H. T. (2014) Our “energy-Ca(2+) signaling deficits” hypothesis and its explanatory potential for key features of Alzheimer’s disease, Front. Aging Neurosci., 6, 329.

    PubMed  PubMed Central  Google Scholar 

  128. Inestrosa, N. C., Reyes, A. E., Chacon, M. A., Cerpa, W., Villalon, A., Montiel, J., Merabachvili, G., Aldunate, R., Bozinovic, F., and Aboitiz, F. (2005) Human-like rodent amyloid-beta-peptide determines Alzheimer pathology in aged wild-type Octodon degu, Neurobiol. Aging, 26, 10231028.

    Article  CAS  Google Scholar 

  129. Van Groen, T., Kadish, I., Popovic, N., Popovic, M., Caballero-Bleda, M., Bano-Otalora, B., Vivanco, P., Rol, M. A., and Madrid, J. A. (2011) Age-related brain pathology in Octodon degu: blood vessel, white matter and Alzheimer-like pathology, Neurobiol. Aging, 32, 16511661.

    Google Scholar 

  130. De Strooper, B., Simons, M., Multhaup, G., Van Leuven, F., Beyreuther, K., and Dotti, C. G. (1995) Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence, EMBO J., 14, 4932–4938.

    PubMed  PubMed Central  Google Scholar 

  131. Roychaudhuri, R., Zheng, X., Lomakin, A., Maiti, P., Condron, M. M., Benedek, G. B., Bitan, G., Bowers, M. T., and Teplow, D. B. (2015) Role of species-specific primary structure differences in Aß42 assembly and neurotoxicity, ACS Chem. Neurosci., 6, 1941–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Landesburg, G., and Ruehl, W. (1997) Geriatric behavioral problems, Vet. Clin. North Am. Small Pract., 27, 15371559.

    Google Scholar 

  133. Cummings, B. J., Su, J. H., Cotman, C. W., White, R., and Russell, M. J. (1993) Beta-amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer’s disease, Neurobiol. Aging, 14, 547–560.

    Article  CAS  PubMed  Google Scholar 

  134. Cotman, C. W., and Head, E. (2008) The canine (dog) model of human aging and disease: dietary, environmental and immunotherapy approaches, J. Alzheimer’s Dis., 15, 685–707.

    CAS  Google Scholar 

  135. Head, E., McCleary, R., Hahn, F. F., Milgram, N. W., and Cotman, C. W. (2000) Region-specific age at onset of beta-amyloid in dogs, Neurobiol. Aging, 21, 89–96.

    Article  CAS  PubMed  Google Scholar 

  136. Russell, M. J., White, R., Patel, E., Markesbery, W. R., Watson, C. R., and Geddes, J. W. (1992) Familial influence on plaque formation in the beagle brain, Neuroreport, 3, 1093–1096.

    Article  CAS  PubMed  Google Scholar 

  137. Serizawa, S., Chambers, J. K., and Une, Y. (2012) Beta amyloid deposition and neurofibrillary tangles spontaneously occur in the brains of captive cheetahs (Acinonyx jubatus), Vet. Pathol., 49, 304–312.

    Article  CAS  PubMed  Google Scholar 

  138. Head, E., Moffat, K., Das, P., Sarsoza, F., Poon, W. W., Landsberg, G., Cotman, C. W., and Murphy, M. P. (2005) Beta-amyloid deposition and tau phosphorylation in clinically characterized aged cats, Neurobiol. Aging, 26, 749763.

    Article  CAS  Google Scholar 

  139. Mutsuga, M., Chambers, J. K., Uchida, K., Tei, M., Makibuchi, T., Mizorogi, T., Takashima, A., and Nakayama, H. (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain, J. Vet. Med. Sci., 74, 51–57.

    Article  CAS  PubMed  Google Scholar 

  140. Chambers, J. K., Tokuda, T., Uchida, K., Ishii, R., Tatebe, H., Takahashi, E., Tomiyama, T., Une, Y., and Nakayama, H. (2015) The domestic cat as a natural animal model of Alzheimer’s disease, Acta Neuropathol. Commun., 3, 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Heilbroner, P. L., and Kemper, T. L. (1990) The cytoarchitectonic distribution of senile plaques in three aged monkeys, Acta Neuropathol., 81, 60–65.

    Article  CAS  PubMed  Google Scholar 

  142. Rosen, R. F., Farberg, A. S., Gearing, M., Dooyema, J., Long, P. M., Anderson, D. C., Davis-Turak, J., Coppola, G., Geschwind, D. H., Pare, J. F., Duong, T. Q., Hopkins, W. D., Preuss, T. M., and Walker, L. C. (2008) Tauopathy with paired helical filaments in an aged chimpanzee, J. Comp. Neurol., 509, 259–270.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sherwood, C. C., Gordon, A. D., Allen, J. S., Phillips, K. A., Erwin, J. M., Hof, P. R., and Hopkins, W. D. (2011) Aging of the cerebral cortex differs between humans and chimpanzees, Proc. Natl. Acad. Sci. USA, 108, 13029–13034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Blard, O., Feuillette, S., Bou, J., Chaumette, B., Frebourg, T., Campion, D., and Lecourtois, M. (2007) Cytoskeleton proteins are modulators of mutant tauinduced neurodegeneration in Drosophila, Hum. Mol. Genet., 16, 555–566.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, C. C., Xing, A., Tan, M. S., Tan, L., and Yu, J. T. (2016) The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy, Mol. Neurobiol., 53, 4893–4904.

    Article  CAS  PubMed  Google Scholar 

  146. Khatoon, S., Grundke-Iqbal, I., and Iqbal, K. (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein, J. Neurochem., 59, 750–753.

    Article  CAS  PubMed  Google Scholar 

  147. Boutajangout, A., Boom, A., Leroy, K., and Brion, J. P. (2004) Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease, FEBS Lett., 576, 183–189.

    Article  CAS  PubMed  Google Scholar 

  148. Andorfer, C., Kress, Y., Espinoza, M., De Silva, R., Tucker, K. L., Barde, Y. A., Duff, K., and Davies, P. (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms, J. Neurochem., 86, 582–590.

    Article  CAS  PubMed  Google Scholar 

  149. Tiraboschi, P., Hansen, L. A., Thal, L. J., and CoreyBloom, J. (2004) The importance of neuritic plaques and tangles to the development and evolution of AD, Neurology, 62, 1984–1989.

    Article  CAS  PubMed  Google Scholar 

  150. Grueninger, F., Bohrmann, B., Czech, C., Ballard, T. M., Frey, J. R., Weidensteiner, C., Von Kienlin, M., and Ozmen, L. (2010) Phosphorylation of Tau at S422 is enhanced by Abeta in TauPS2APP triple transgenic mice, Neurobiol. Dis., 37, 294–306.

    Article  CAS  PubMed  Google Scholar 

  151. Song, M. S., Rauw, G., Baker, G. B., and Kar, S. (2008) Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation, Eur. J. Neurosci., 28, 1989–2002.

    Article  CAS  PubMed  Google Scholar 

  152. Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P., and Ferreira, A. (2002) Tau is essential to beta-amyloidinduced neurotoxicity, Proc. Natl. Acad. Sci. USA, 99, 6364–6369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bigio, E. H., Vono, M. B., Satumtira, S., Adamson, J., Sontag, E., Hynan, L. S., White, C. L., Baker, M., and Hutton, M. (2001) Cortical synapse loss in progressive supranuclear palsy, J. Neuropathol. Exp. Neurol., 60, 403410.

    Google Scholar 

  154. Lipton, A. M., Cullum, C. M., Satumtira, S., Sontag, E., Hynan, L. S., White, C. L., and Bigio, E. H. (2001) Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias, Arch. Neurol., 58, 1233–1239.

    Article  CAS  PubMed  Google Scholar 

  155. Roberson, E. D., Halabisky, B., Yoo, J. W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G. Q., Palop, J. J., Noebels, J. L., and Mucke, L. (2011) Amyloid-ß/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease, J. Neurosci., 31, 700–711.

    CAS  PubMed  Google Scholar 

  156. Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., Jones, R. W., Bullock, R., Love, S., Neal, J. W., Zotova, E., and Nicoll, J. A. (2008) Longterm effects of Abeta42 immunization in Alzheimer’s disease: follow-up of a randomized, placebo-controlled phase I trial, Lancet, 372, 216–223.

    Article  CAS  PubMed  Google Scholar 

  157. Bennett, D. A., Schneider, J. A., Wilson, R. S., Bienias, J. L., and Arnold, S. E. (2004) Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function, Arch. Neurol., 61, 378–384.

    Article  PubMed  Google Scholar 

  158. Tiraboschi, P., Sabbagh, M. N., Hansen, L. A., Salmon, D. P., Merdes, A., Gamst, A., Masliah, E., Alford, M., Thal, L. J., and Corey-Bloom, J. (2004) Alzheimer disease without neocortical neurofibrillary tangles: “a second look”, Neurology, 62, 1141–1147.

    Article  CAS  PubMed  Google Scholar 

  159. Berg, L., McKeel, D. W., Jr., Miller, J. P., Storandt, M., Rubin, E. H., Morris, J. C., Baty, J., Coats, M., Norton, J., Goate, A. M., Price, J. L., Gearing, M., Mirra, S. S., and Saunders, A. M. (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype, Arch. Neurol., 55, 326–335.

    CAS  Google Scholar 

  160. Graeber, M. B., Kosel, S., Egensperger, R., Banati, R. B., Muller, U., Bise, K., Hoff, P., Moller, H. J., Fujisawa, K., and Mehraein, P. (1997) Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis, Neurogenetics, 1, 73–80.

    CAS  PubMed  Google Scholar 

  161. Stamer, K., Vogel, R., Thies, E., Mandelkow, E., and Mandelkow, E. M. (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J. Cell. Biol., 156, 1051–1063.

    CAS  PubMed  Google Scholar 

  162. Matrone, C., Barbagallo, A. P., La Rosa, L. R., Florenzano, F., Ciotti, M. T., Mercanti, D., Chao, M. V., Calissano, P., and D’Adamio, L. (2011) APP is phosphorylated by TrkA and regulates NGF/TrkA signaling, J. Neurosci., 31, 11756–11761.

  163. Kumar, S., and Walter, J. (2011) Phosphorylation of amyloid beta (Aß) peptides -a trigger for formation of toxic aggregates in Alzheimer’s disease, Aging, 3, 803–812.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Askanas, V., Engel, W. K., and Nogalska, A. (2009) Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation, Brain Pathol., 19, 493–506.

    CAS  Google Scholar 

  165. Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D’Avanzo, C., Chen, H., Hooli, B., Asselin, C., Muffat, J., Klee, J. B., Zhang, C., Wainger, B. J., Peitz, M., Kovacs, D. M., Woolf, C. J., Wagner, S. L., Tanzi, R. E., and Kim, D. Y. (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease, Nature, 515, 274–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Andreeva.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 2, pp. 226-246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, T.V., Lukiw, W.J. & Rogaev, E.I. Biological basis for amyloidogenesis in Alzheimer’S disease. Biochemistry Moscow 82, 122–139 (2017). https://doi.org/10.1134/S0006297917020043

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917020043

Keywords

Navigation