Skip to main content
Log in

Phylogeny of aging and related phenoptotic phenomena

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The interpretation of aging as adaptive, i.e. as a phenomenon genetically determined and modulated, and with an evolutionary advantage, implies that aging, as any physiologic mechanism, must have phylogenetic connections with similar phenomena. This review tries to find the phylogenetic connections between vertebrate aging and some related phenomena in other species, especially within those phenomena defined as phenoptotic, i.e. involving the death of one or more individuals for the benefit of other individuals. In particular, the aim of the work is to highlight and analyze similarities and connections, in the mechanisms and in the evolutionary causes, between: (i) proapoptosis in prokaryotes and apoptosis in unicellular eukaryotes; (ii) apoptosis in unicellular and multicellular eukaryotes; (iii) aging in yeast and in vertebrates; and (iv) the critical importance of the DNA subtelomeric segment in unicellular and multicellular eukaryotes. In short, there is strong evidence that vertebrate aging has clear similarities and connections with phenomena present in organisms with simpler organization. These phylogenetic connections are a necessary element for the sustainability of the thesis of aging explained as an adaptive phenomenon, and, on the contrary, are incompatible with the opposite view of aging as being due to the accumulation of random damages of various kinds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145–162.

    Article  CAS  PubMed  Google Scholar 

  2. Deevey, E. S., Jr. (1947) Life tables for natural populations of animals, Quart. Rev. Biol., 22, 283–314.

    Article  PubMed  Google Scholar 

  3. Laws, R. M., and Parker, I. S. (1968) Recent studies on elephant populations in East Africa, Symp. Zool. Soc. Lond., 21, 319–359.

    Google Scholar 

  4. Spinage, C. A. (1970) Population dynamics of the Uganda Defassa Waterbuck (Kobus defassa Ugandae Neumann) in the Queen Elizabeth park, Uganda, J. Anim. Ecol., 39, 51–78.

    Article  Google Scholar 

  5. Spinage, C. A. (1972) African ungulate life tables, Ecology, 53, 645–652.

    Article  Google Scholar 

  6. Finch, C. E. (1990) Longevity, Senescence, and the Genome, The University of Chicago Press, Chicago.

    Google Scholar 

  7. Holmes, D. J., and Austad, S. N. (1995) Birds as animal models for the comparative biology of aging: a prospectus, J. Gerontol. A Biol. Sci., 50, 59–66.

    Article  Google Scholar 

  8. Ricklefs, R. E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span, Am. Nat., 152, 24–44.

    Article  CAS  PubMed  Google Scholar 

  9. Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology, Ageing Res. Rev., 12, 214–225.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hill, K., and Hurtado, A. M. (1966) Ache Life History, Aldine De Gruyter, New York.

    Google Scholar 

  11. Kirkwood, T. B., and Austad, S. N. (2000) Why do we age? Nature, 408, 233–238.

    Article  CAS  PubMed  Google Scholar 

  12. Martin, G. M., and Oshima, J. (2000) Lessons from human progeroid syndromes, Nature, 408, 263–266.

    Article  CAS  PubMed  Google Scholar 

  13. Kirkwood, T. B. (2005) Understanding the odd science of aging, Cell, 120, 437–447.

    Article  CAS  PubMed  Google Scholar 

  14. Libertini, G. (2008) Empirical evidence for various evolutionary hypotheses on species demonstrating increasing mortality with increasing chronological age in the wild, Sci. World J., 8, 182–193.

    Article  Google Scholar 

  15. Kuhn, T. S. (1962) The Structure of Scientific Revolutions, The University of Chicago Press, Chicago.

    Google Scholar 

  16. Minot, C. S. (1907) The Problem of Age, Growth, and Death; A Study of Cytomorphosis, Based on lectures at the Lowell Institute, London.

    Google Scholar 

  17. Carrel, A., and Ebeling, A. H. (1921) Antagonistic growth principles of serum and their relation to old age, J. Exp. Med., 38, 419–425.

    Article  Google Scholar 

  18. Brody, S. (1924) The kinetics of senescence, J. Gen. Physiol., 6, 245–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bidder, G. P. (1932) Senescence, Br. Med. J., 115, 58315850.

    Google Scholar 

  20. Lansing, A. I. (1948) Evidence for aging as a consequence of growth cessation, Proc. Natl. Acad. Sci. USA, 34, 304–310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lansing, A. I. (1951) Some physiological aspects of ageing, Physiol. Rev., 31, 274–284.

    CAS  PubMed  Google Scholar 

  22. Medawar, P. B. (1952) An Unsolved Problem in Biology, H. K. Lewis, London; reprinted as Medawar, P. B. (1957) The Uniqueness of the Individual, Methuen, London.

    Google Scholar 

  23. Williams, G. C. (1957) Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11, 398–411.

    Article  Google Scholar 

  24. Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.

    Article  CAS  PubMed  Google Scholar 

  25. Edney, E. B., and Gill, R. W. (1968) Evolution of senescence and specific longevity, Nature, 220, 281–282.

    Article  CAS  PubMed  Google Scholar 

  26. Harman, D. (1972) The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20, 145–147.

    Article  CAS  PubMed  Google Scholar 

  27. Kirkwood, T. B. (1977) Evolution of ageing, Nature, 270, 301–304.

    Article  CAS  PubMed  Google Scholar 

  28. Comfort, A. (1979) The Biology of Senescence, Elsevier North Holland, New York.

    Google Scholar 

  29. Kirkwood, T. B., and Holliday, R. (1979) The evolution of ageing and longevity, Proc. R. Soc. Lond. B Biol. Sci., 205, 531–546.

    Article  CAS  PubMed  Google Scholar 

  30. Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E., Jr. (1980) Mitochondrial role in cell aging, Exp. Gerontol., 15, 575–591.

    Article  CAS  PubMed  Google Scholar 

  31. Mueller, L. D. (1987) Evolution of accelerated senescence in laboratory populations of drosophila, Proc. Natl. Acad. Sci. USA, 84, 1974–1977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rose, M. R. (1991) Evolutionary Biology of Aging, Oxford University Press, New York.

    Google Scholar 

  33. Partridge, L., and Barton, N. H. (1993) Optimality, mutation, and the evolution of ageing, Nature, 362, 305–311.

    Article  CAS  PubMed  Google Scholar 

  34. Bohr, V. A., and Anson, R. M. (1995) DNA damage, mutation, and fine structure DNA repair in aging, Mutat. Res., 338, 25–34.

    Article  CAS  PubMed  Google Scholar 

  35. Croteau, D. L., and Bohr, V. A. (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells, J. Biol. Chem., 272, 25409–25412.

    Article  CAS  PubMed  Google Scholar 

  36. Beckman, K. B., and Ames, B. N. (1998) The free radical theory of aging matures, Physiol. Rev., 78, 547–581.

    CAS  PubMed  Google Scholar 

  37. Weinert, B. T., and Timiras, P. S. (2003) Invited review: theories of aging, J. Appl. Physiol., 95, 1706–1716.

    Article  CAS  PubMed  Google Scholar 

  38. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y, M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T., and Larsson, N. G. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase, Nature, 429, 417–423.

    Article  CAS  PubMed  Google Scholar 

  39. Balaban, R. S., Nemoto, S., and Finkel, T. (2005) Mitochondria, oxidants, and aging, Cell, 120, 483–495.

    Article  CAS  PubMed  Google Scholar 

  40. Blagosklonny, M. V. (2006) Aging and immortality: quasiprogrammed senescence and its pharmacologic inhibition, Cell Cycle, 5, 2087–2102.

    Article  CAS  PubMed  Google Scholar 

  41. Sanz, A., and Stefanatos, R. K. (2008) The mitochondrial free radical theory of aging: a critical view, Curr. Aging Sci., 1, 10–21.

    Article  CAS  PubMed  Google Scholar 

  42. Oliveira, B. F., Nogueira-Machado, J.-A., and Chaves, M. M. (2010) The role of oxidative stress in the aging process, Sci. World J., 10, 1121–1128.

    Article  CAS  Google Scholar 

  43. Blagosklonny, M. V. (2013) MTOR-driven quasi-programmed aging as a disposable soma theory: blind watchmaker vs. intelligent designer, Cell Cycle, 12, 1842–1847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Vol. I, Clarendon Press, Oxford.

    Book  Google Scholar 

  45. Weismann, A. (1892) Essays upon Heredity and Kindred Biological Problems, Vol. II, Clarendon Press, Oxford.

    Google Scholar 

  46. Kirkwood, T. B. L., and Cremer, T. (1982) Cytogerontology since 1881: a reappraisal of August Weissmann and a review of modern progress, Hum. Genet., 60, 101–121.

    Article  CAS  PubMed  Google Scholar 

  47. Libertini, G. (2011) Evolutionary Arguments on Aging, Disease, and Other Topics, Azinet Press, Crownsville.

    Google Scholar 

  48. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  49. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  50. Skulachev, V. P. (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells, and organisms, Mol. Aspects Med., 20, 139–184.

    Article  CAS  PubMed  Google Scholar 

  51. Skulachev, V. P. (2001. The programmed death phenomena, aging, and the Samurai law of biology, Exp. Gerontol., 36, 995–1024.

    Article  CAS  PubMed  Google Scholar 

  52. Bredesen, D. E. (2004. The non-existent aging program: how does it work? Aging Cell, 3, 255–259.

    Article  CAS  PubMed  Google Scholar 

  53. Goldsmith, T. C. (2004. Aging as an evolved characteristic–Weismann’s theory reconsidered, Med. Hypotheses, 62, 304–308.

    Article  PubMed  Google Scholar 

  54. Mitteldorf, J. (2004. Aging selected for its own sake, Evol. Ecol. Res., 6, 1–17.

    Google Scholar 

  55. Travis, J. M. (2004. The evolution of programmed death in a spatially structured population, J. Gerontol. A Biol. Sci. Med. Sci., 59, 301–305.

    Article  PubMed  Google Scholar 

  56. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005. Programmed and altruistic ageing, Nat. Rev. Genet., 6, 866–872.

    Article  CAS  PubMed  Google Scholar 

  57. Skulachev, V. P., and Longo, V. D. (2005. Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann. N. Y. Acad. Sci., 1057, 145–164.

    Article  CAS  PubMed  Google Scholar 

  58. Libertini, G. (2006. Evolutionary explanations of the “actuarial senescence in the wild” and of the “state of senility”, Sci. World J., 6, 1086–1108.

    Article  Google Scholar 

  59. Goldsmith, T. C. (2008. Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies, J. Theor. Biol., 252, 764–768.

    Article  PubMed  Google Scholar 

  60. Libertini, G. (2009) The role of telomere-telomerase system in age-related fitness decline, a tameable process, in Telomeres: Function, Shortening, and Lengthening (Mancini, L., ed.) Nova Science Publishers, New York, pp. 77–132.

    Google Scholar 

  61. Mitteldorf, J., and Pepper, J. (2009. Senescence as an adaptation to limit the spread of disease, J. Theor. Biol., 260, 186–195.

    Article  PubMed  Google Scholar 

  62. Martins, A. C. (2011. Change and aging senescence as an adaptation, PLoS One, 6, e24328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Libertini, G. (2012. Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.

    Article  CAS  Google Scholar 

  64. Libertini, G. (2013. Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay), Biochemistry (Moscow), 78, 1023–1032.

    Article  CAS  Google Scholar 

  65. Mitteldorf, J., and Martins, A. C. (2014. Programmed life span in the context of evolvability, Am. Nat., 184, 289–302.

    Article  PubMed  Google Scholar 

  66. Skulachev, V. P. (2002. Programmed death phenomena: from organelle to organism, Ann. N. Y. Acad. Sci., 959, 214–237.

    Article  CAS  PubMed  Google Scholar 

  67. Libertini, G. (2015. Non-programmed versus programmed aging paradigm, Curr. Aging Sci., 8, in press.

    Google Scholar 

  68. Libertini, G. (2009) Prospects of a longer life span beyond the beneficial effects of a healthy lifestyle, in: Handbook on Longevity: Genetics, Diet, and Disease (Bentely, J. V., and Keller, M., eds.) Nova Science Publishers Inc., New York, pp. 35–96.

    Google Scholar 

  69. Libertini, G. (2014. Programmed aging paradigm: how we get old, Biochemisry (Moscow), 79, 1004–1016.

    Article  CAS  Google Scholar 

  70. Loisel, D. A., Alberts, S. C., and Ober, C. (2008) Functional significance of MHC variation in mate choice, reproductive outcome, and disease risk, in Evolution in Health and Disease (Stearns, S. C., and Koella, J. C., eds.) 2nd Edn., Oxford University Press, Oxford.

    Google Scholar 

  71. Apanius, V., Penn, D., Slev, P. R., Ruff, L. R., and Potts, W. K. (1997. Crit. Rev. Immunol., 17, 179–224.

    Article  CAS  PubMed  Google Scholar 

  72. Raff, M. C. (1998. Cell suicide for beginners, Nature, 396, 119–122.

    Article  CAS  PubMed  Google Scholar 

  73. Hausfater, G., and Hrdy, S. B. (1984) Infanticide: Comparative and Evolutionary Perspectives, Aldine, New York.

    Google Scholar 

  74. Skulachev, V. P. (2003) Aging and the programmed death phenomena, in Topics in Current Genetics (Nystrom, T., and Osiewacz, H. D., eds.) Vol. 3, Model Systems in Aging, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  75. Lane, N. (2008. Marine microbiology: origins of death, Nature, 453, 583–585.

    Article  CAS  PubMed  Google Scholar 

  76. Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., and Hazan, R. (2004. Bacterial programmed cell death systems as targets for antibiotics, Trends Microbiol., 12, 66–71.

    Article  CAS  PubMed  Google Scholar 

  77. Hochman, A. (1997. Programmed cell death in prokaryotes, Crit. Rev. Microbiol., 23, 207–214.

    Article  CAS  PubMed  Google Scholar 

  78. Koonin, E. V., and Aravind, L. (2002. Origin and evolution of eukaryotic apoptosis: the bacterial connection, Cell Death Differ., 9, 394–404.

    Article  CAS  PubMed  Google Scholar 

  79. Lewis, K. (2000. Programmed death in bacteria, Microbiol. Mol. Biol. Rev., 64, 503–514.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Maynard Smith, J. (1964. Group selection and kin selection, Nature, 201, 1145–1147.

    Article  Google Scholar 

  81. Maynard Smit, J. (1976. Group selection, Quart. Rev. Biol., 51, 277–283.

    Article  Google Scholar 

  82. Hamilton, W. D. (1964. The genetical evolution of social behaviour, I, II, J. Theor. Biol., 7, 1–52.

    Article  CAS  PubMed  Google Scholar 

  83. Hamilton, W. D. (1970. Selfish and spiteful behaviour in an evolutionary model, Nature, 228, 1218–1220.

    Article  CAS  PubMed  Google Scholar 

  84. Trivers, R. L. (1971. The evolution of reciprocal altruism, Quart. Rev. Biol., 46, 35–57.

    Article  Google Scholar 

  85. Trivers, R. L., and Hare, H. (1976. Haploidiploidy and the evolution of the social insect, Science, 191, 249–263.

    Article  CAS  PubMed  Google Scholar 

  86. Madeo, F., Frohlich, E., and Frohlich, K. U. (1997. A yeast mutant showing diagnostic markers of early and late apoptosis, J. Cell Biol., 139, 729–734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ligr, M., Madeo, F., Frohlich, E., Hilt, W., Frohlich, K. U., and Wolf, D. H. (1998. Mammalian Bax triggers apoptotic changes in yeast, FEBS Lett., 438, 61–65.

    Article  CAS  PubMed  Google Scholar 

  88. Longo, V. D., Ellerby, L. M., Bredesen, D. E., Valentine, J. S., and Gralla, E. B. (1997. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast, J. Cell Biol., 137, 1581–1588.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Kaeberlein, M., Burtner, C. R., and Kennedy, B. K. (2007. Recent developments in yeast aging, PLoS Genet., 3, e84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S. J., Wolf, D. H., and Frohlich, K. U. (1999. Oxygen stress: a regulator of apoptosis in yeast, J. Cell Biol., 145, 757–767.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Büttner, S., Eisenberg, T., Herker, E., CarmonaGutierrez, D., Kroemer, G., and Madeo, F. (2006. Why yeast cells can undergo apoptosis: death in times of peace, love, and war, J. Cell Biol., 175, 521–525.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Granot, D., Levine, A., and Dor-Hefetz, E. (2003. Sugarinduced apoptosis in yeast cells, FEMS Yeast Res., 4, 7–13.

    Article  CAS  PubMed  Google Scholar 

  93. Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Frohlich, K. U., Wissing, S., Büttner, S., Fehr, M., Sigrist, S., and Madeo, F. (2004. Chronological aging leads to apoptosis in yeast, J. Cell Biol., 164, 501–507.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L. L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae, J. Cell Biol., 166, 1055–1067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Mitteldorf, J. (2006. How evolutionary thinking affects people’s ideas about aging interventions, Rejuvenation Res., 9, 346–350.

    Article  PubMed  Google Scholar 

  96. Skulachev, V. P. (2002. Programmed death in yeast as adaptation? FEBS Lett., 528, 23–26.

    Article  CAS  PubMed  Google Scholar 

  97. Jazwinski, S. M. (1993. The genetics of aging in the yeast Saccharomyces cerevisiae, Genetica, 91, 35–51.

    Article  CAS  PubMed  Google Scholar 

  98. Fabrizio, P., and Longo, V. D. (2008. Chronological aging-induced apoptosis in yeast, Biochim. Biophys. Acta, 1783, 1280–1285.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., Kohlwein, S., Dawes, I., Frohlich, K.-U., and Breitenbach, M. (2001. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis, Mol. Microbiol., 39, 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  100. Lesur, I., and Campbell, J. L. (2004. The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells, MBC Online, 15, 1297–1312.

    CAS  Google Scholar 

  101. Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., Schwimbersky, R., Rid, R., and Breitenbach, M. (2007. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing, Nucleic Acids Res., 35, 7514–7526.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Olovnikov, A. M. (1971. Principle of marginotomy in template synthesis of polynucleotides, Dokl. Akad. Nauk SSSR, 201, 1496–1499.

    CAS  PubMed  Google Scholar 

  103. Watson, J. D. (1972. Origin of concatemeric T7 DNA, Nat. New Biol., 239, 197–201.

    Article  CAS  PubMed  Google Scholar 

  104. Olovnikov, A. M. (1973. A theory of marginotomy: the incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the problem, J. Theor. Biol., 41, 181–190.

    Article  CAS  PubMed  Google Scholar 

  105. Greider, C. W., and Blackburn, E. H. (1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 51, 405–413.

    Article  Google Scholar 

  106. D’Mello, N. P., and Jazwinski, S. M. (1991. Telomere length constancy during aging of Saccharomyces cerevisiae, J. Bacteriol., 173, 6709–6713.

    PubMed Central  PubMed  Google Scholar 

  107. Smeal, T., Claus, J., Kennedy, B., Cole, F., and Guarente, L. (1996. Loss of transcriptional silencing causes sterility in old mother cells of Saccharomyces cerevisiae, Cell, 84, 633–642.

    Article  CAS  PubMed  Google Scholar 

  108. Maringele, L., and Lydall, D. (2004. Telomeraseand recombination-independent immortalization of budding yeast, Genes Dev., 18, 2663–2675.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Sinclair, D. A., and Guarente, L. (1997. Extrachromosomal rDNA circles–cause of aging in yeast, Cell, 91, 1033–1042.

    Article  CAS  PubMed  Google Scholar 

  110. Fossel, M. B. (2004) Cells, Aging and Human Disease, Oxford University Press, New York.

    Google Scholar 

  111. Pianka, E. R. (1970. On rand K-selection, Am. Nat., 104, 592–597.

    Article  Google Scholar 

  112. Lee, R. (2008. Sociality, selection, and survival: simulated evolution of mortality with intergenerational transfers and food sharing, Proc. Natl. Acad. Sci. USA, 105, 7124–7128.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Sinclair, D., Mills, K., and Guarente, L. (1998. Aging in Saccharomyces cerevisiae, Annu. Rev. Microbiol., 52, 533–560.

    Article  CAS  PubMed  Google Scholar 

  114. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Erwig, L.-P., and Henson, P. M. (2008. Clearance of apoptotic cells by phagocytes, Cell Death Differ., 15, 243–250.

    Article  CAS  PubMed  Google Scholar 

  116. Nijhawan, D., Honarpour, N., and Wang, X. (2000. Apoptosis in neural development and disease, Annu. Rev. Neurosci., 23, 73–87.

    Article  CAS  PubMed  Google Scholar 

  117. Greenhalgh, D. G. (1998. The role of apoptosis in wound healing, Int. J. Biochem. Cell Biol., 30, 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  118. Cohen, J. J. (1993. Programmed cell death and apoptosis in lymphocyte development and function, Chest, 103, 99–101.

    Article  Google Scholar 

  119. Opferman, J. T. (2008. Apoptosis in the development of the immune system, Cell Death Differ., 15, 234–242.

    Article  CAS  PubMed  Google Scholar 

  120. Tesfaigzi, Y. (2006. Roles of apoptosis in airway epithelia, Am. J. Respir. Cell Mol. Biol., 34, 537–547.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. White, E. (2006. Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis, Cell Death Differ., 13, 1371–1377.

    Article  CAS  PubMed  Google Scholar 

  122. Pontn, J., Stein, W. D., and Shall, S. (1983. A quantitative analysis of the aging of human glial cells in culture, Cell Phys., 117, 342–352.

    Article  Google Scholar 

  123. Harada, K., Iwata, M., Kono, N., Koda, W., Shimonishi, T., and Nakanuma, Y. (2000. Distribution of apoptotic cells and expression of apoptosis-related proteins along the intrahepatic biliary tree in normal and non-biliary diseased liver, Histopathology, 37, 347–354.

    Article  CAS  PubMed  Google Scholar 

  124. Cardani, R., and Zavanella, T. (2000. Age-related cell proliferation and apoptosis in the kidney of male Fischer 344 rats with observations on a spontaneous tubular cell adenoma, Toxicol. Pathol., 28, 802–806.

    Article  CAS  PubMed  Google Scholar 

  125. Finegood, D. T., Scaglia, L., and Bonner-Weir, S. (1995. Dynamics of ß-cell mass in the growing rat pancreas. Estimation with a simple mathematical model, Diabetes, 44, 249–256.

    Article  CAS  PubMed  Google Scholar 

  126. Benedetti, A., Jezequel, A. M., and Orlandi, F. (1988. A quantitative evaluation of apoptotic bodies in rat liver, Liver, 8, 172–177.

    Article  CAS  PubMed  Google Scholar 

  127. Dremier, S., Golstein, J., Mosselmans, R., Dumont, J. E., Galand, P., and Robaye, B. (1994. Apoptosis in dog thyroid cells, Biochem. Biophys. Res. Commun., 200, 52–58.

    Article  CAS  PubMed  Google Scholar 

  128. Sutherland, L. M., Edwards, Y. S., and Murray, A. W. (2001. Alveolar type II cell apoptosis, Comp. Biochem. Physiol., 129, 267–285.

    Article  CAS  Google Scholar 

  129. Heraud, F., Heraud, A., and Harmand, M. F. (2000. Apoptosis in normal and osteoarthritic human articular cartilage, Ann. Rheum. Dis., 59, 959–965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Xia, S. J., Xu, C. X., Tang, X. D., Wang, W. Z, and Du, D. L. (2001. Apoptosis and hormonal milieu in ductal system of normal prostate and benign prostatic hyperplasia, Asian J. Androl., 3, 131–134.

    CAS  PubMed  Google Scholar 

  131. Prins, J. B., and O’Rahilly, S. (1997. Regulation of adipose cell number in man, Clin. Sci. (London), 92, 3–11.

    Article  CAS  Google Scholar 

  132. Spelsberg, T. C., Subramaniam, M., Riggs, B. L., and Khosla, S. (1999. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton, Mol. Endocrinol., 13, 819–828.

    Article  CAS  PubMed  Google Scholar 

  133. Migheli, A., Mongini, T., Doriguzzi, C., Chiado-Piat, L., Piva, R., Ugo, I., and Palmucci, L. (1997. Muscle apoptosis in humans occurs in normal and denervated muscle, but not in myotonic dystrophy, dystrophinopathies or inflammatory disease, Neurogenetics, 1, 81–87.

    Article  CAS  PubMed  Google Scholar 

  134. Pollack, M., and Leeuwenburgh, C. (2001. Apoptosis and aging: role of the mitochondria, J. Gerontol. A Biol. Sci. Med. Sci., 56, 475–482.

    Article  Google Scholar 

  135. Israels, L. G., and Israels, E. D. (1999. Apoptosis, Stem Cells, 17, 306–313.

    Article  CAS  PubMed  Google Scholar 

  136. Lynch, M. P., Nawaz, S., and Gerschenson, L. E. (1986. Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen, Proc. Natl. Acad. Sci. USA, 83, 47844788.

    Google Scholar 

  137. Medh, R. D., and Thompson, E. B. (2000. Hormonal regulation of physiological cell turnover and apoptosis, Cell Tissue Res., 301, 101–124.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Wyllie, A. H., Kerr, J. F. R., and Currie, A. R. (1980. Cell death: the significance of apoptosis, Int. Rev. Cytol., 68, 251–306.

    Article  CAS  PubMed  Google Scholar 

  139. Ozen, M., Imam, S. A., Datar, R. H., Multani, A. S., Narayanan, R., Chung, L. W., Von Eschenbach, A. C., and Pathak, S. (1998. Telomeric DNA: marker for human prostate cancer development? Prostate, 36, 264–271.

    Article  CAS  PubMed  Google Scholar 

  140. Holt, S. E., Glinsky, V. V., Ivanova, A. B., and Glinsky, G. V. (1999. Resistance to apoptosis in human cells conferred by telomerase function and telomere stability, Mol. Carcinog., 25, 241–248.

    Article  CAS  PubMed  Google Scholar 

  141. Seimiya, H., Tanji, M., Oh-hara, T., Tomida, A., Naasani, I., and Tsuruo, T. (1999. Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells, Biochem. Biophys. Res. Commun., 260, 365–370.

    Article  CAS  PubMed  Google Scholar 

  142. Ren, J. G., Xia, H. L., Tian, Y. M., Just, T., Cai, G. P., and Dai, Y. R. (2001. Expression of telomerase inhibits hydroxyl radical-induced apoptosis in normal telomerase negative human lung fibroblasts, FEBS Lett., 488, 133–138.

    Article  CAS  PubMed  Google Scholar 

  143. Carrel, A., and Ebeling, A. H. (1921. Age and multiplication of fibroblasts, J. Exp. Med., 34, 599–623.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Hayflick, L., and Moorhead, P. S. (1961. The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585–621.

    Article  CAS  PubMed  Google Scholar 

  145. Hayflick, L. (1965. The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 37, 614–636.

    Article  CAS  PubMed  Google Scholar 

  146. Schneider, E. L., and Mitsui, Y. (1976. The relationship between in vitro cellular aging and in vivo human age, Proc. Natl. Acad. Sci. USA, 73, 3584–3588.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Rheinwald, J. G., and Green, H. (1975. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells, Cell, 6, 331–344.

    Article  CAS  PubMed  Google Scholar 

  148. Bierman, E. L. (1978. The effect of donor age on the in vitro life span of cultured human arterial smooth-muscle cells, In vitro, 14, 951–955.

    Article  CAS  PubMed  Google Scholar 

  149. Tassin, J., Malaise, E., and Courtois, Y. (1979. Human lens cells have an in vitro proliferative capacity inversely proportional to the donor age, Exp. Cell Res., 123, 388–392.

    Article  CAS  PubMed  Google Scholar 

  150. Martin, G. M., Sprague, C. A., and Epstein, C. J. (1970. Replicative life span of cultivated human cells. Effects of donor’s age, tissue, and genotype, Lab. Invest., 23, 86–92.

    CAS  PubMed  Google Scholar 

  151. Rohme, D. (1981. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo, Proc. Natl. Acad. Sci. USA, 78, 5009–5013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Blackburn, E. H., and Gall, J. G. (1978. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena, J. Mol. Biol., 120, 33–53.

    Article  CAS  PubMed  Google Scholar 

  153. Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyne, J., Ratliff, R. L., and Wu, J. R. (1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes, Proc. Natl. Acad. Sci. USA, 85, 6622–6626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Blackburn, E. H. (1991. Structure and function of telomeres, Nature, 350, 569–573.

    Article  CAS  PubMed  Google Scholar 

  155. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990. Telomeres shorten during ageing of human fibroblasts, Nature, 345, 458–460.

    Article  CAS  PubMed  Google Scholar 

  156. Yu, G. L., Bradley, J. D., Attardi, L. D., and Blackburn, E. H. (1990. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs, Nature, 344, 126–132.

    Article  CAS  PubMed  Google Scholar 

  157. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C., Morin, G. B., Harley, C. B., Shay, J. W., Lichsteiner, S., and Wright, W. E. (1998. Extension of life span by introduction of telomerase into normal human cells, Science, 279, 349–352.

    Article  CAS  PubMed  Google Scholar 

  158. Counter, C. M., Hahn, W. C., Wei, W., Caddle, S. D., Beijersbergen, R. L., Lansdorp, P. M., Sedivy, J. M., and Weinberg, R. A. (1998. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization, Proc. Natl. Acad. Sci. USA, 95, 1472314728.

    Article  Google Scholar 

  159. De Lange, T., and Jacks, T. (1999. For better or worse? Telomerase inhibition and cancer, Cell, 98, 273–275.

    Article  PubMed  Google Scholar 

  160. Vaziri, H. (1998. Extension of life span in normal human cells by telomerase activation: a revolution in cultural senescence, J. Anti Aging Med., 1, 125–130.

    Article  CAS  Google Scholar 

  161. Vaziri, H., and Benchimol, S. (1998. Reconstitution of telomerase activity in normal cells leads to elongation of telomeres and extended replicative life span, Curr. Biol., 8, 279–282.

    Article  CAS  PubMed  Google Scholar 

  162. Van Steensel, B., and De Lange, T. (1997. Control of telomere length by the human telomeric protein TRF1, Nature, 385, 740–743.

    Article  PubMed  Google Scholar 

  163. Morin, G. B. (1989. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats, Cell, 59, 521–529.

    Article  CAS  PubMed  Google Scholar 

  164. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2013) Essential Cell Biology, 4th Edn., Garland Science, New York.

    Google Scholar 

  165. Anversa, P., Kajstura, J., Leri, A., and Bolli, R. (2006. Life and death of cardiac stem cells, Circulation, 113, 1451–1463.

    Article  PubMed  Google Scholar 

  166. Richardson, B. R., Allan, D. S., and Le, Y. (2014. Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans, Exp. Gerontol., 55, 80–91.

    Article  PubMed  Google Scholar 

  167. Jones, R. B., Whitney, R. G., and Smith, J. R. (1985. Intramitotic variation in proliferative potential: stochastic events in cellular aging, Mech. Ageing Dev., 29, 143–149.

    Article  CAS  PubMed  Google Scholar 

  168. Ponten, J., Stein, W. D., and Shall, S. (1983. A quantitative analysis of the aging of human glial cells in culture, J. Cell Phys., 117, 342–352.

    Article  CAS  Google Scholar 

  169. Blackburn, E. H. (2000. Telomere states and cell fates, Nature, 408, 53–56.

    Article  CAS  PubMed  Google Scholar 

  170. Holt, S. E., Shay, J. W., and Wright, W. E. (1996. Refining the telomere–telomerase hypothesis of aging and cancer, Nat. Biotechnol., 14, 836–839.

    Article  CAS  PubMed  Google Scholar 

  171. Slijepcevic, P., and Hande, M. P. (1999. Chinese hamster telomeres are comparable in size to mouse telomeres, Cytogenet. Cell Genet., 85, 196–199.

    Article  CAS  PubMed  Google Scholar 

  172. Gorbunova, V., Bozzella, M. J., and Seluanov, A. (2008. Rodents for comparative aging studies: from mice to beavers, Age, 30, 111–119.

    Article  PubMed Central  PubMed  Google Scholar 

  173. Ben-Porath, I., and Weinberg, R. (2005. The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol., 37, 961–976.

    Article  CAS  PubMed  Google Scholar 

  174. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription, Cell, 63, 751–762.

    Article  CAS  PubMed  Google Scholar 

  175. Robin, J. D., Ludlow, A. T., Batten, K., Magdinier, F., Stadler, G., Wagner, K. R., Shay, J. W., and Wright, W. E. (2014. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances, Genes Dev., 28, 2464–2476.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  176. Prowse, K. R., and Greider, C. W. (1995. Developmental and tissue-specific regulation of mouse telomerase and telomere length, Proc. Natl. Acad. Sci. USA, 92, 4818–4822.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Flanary, B. E. (2003. Telomeres shorten with age in rat cerebellum and cortex in vivo, J. Anti Aging Med., 6, 299–308.

    Article  CAS  PubMed  Google Scholar 

  178. Herrera, E., Samper, E., Martin-Caballero, J., Flores, J. M., Lee, H. W., and Blasco, M. A. (1999. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres, EMBO J., 18, 2950–2960.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Blasco, M. A., Lee, H. W., Hande, M. P., Samper, E., Lansdorp, P. M., DePinho, R. A., and Greider, C. W. (1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA, Cell, 91, 25–34.

    Article  CAS  PubMed  Google Scholar 

  180. Lee, H. W., Blasco, M. A., Gottlieb, G. J., Horner, J. W., 2nd, Greider, C. W., and DePinho, R. A. (1998. Essential role of mouse telomerase in highly proliferative organs, Nature, 392, 569–574.

    Article  CAS  PubMed  Google Scholar 

  181. Klapper, W., Heidorn, H., Kuhne, K., Parwaresch, R., and Krupp, G. (1998. Telomerase activity in “immortal” fish, FEBS Lett., 434, 409–412.

    Article  CAS  PubMed  Google Scholar 

  182. Klapper, W., Kuhne, K., Singh, K. K., Heidorn, K., Parwaresch, R., and Krupp, G. (1998. Longevity of lobsters is linked to ubiquitous telomerase expression, FEBS Lett., 439, 143–146.

    Article  CAS  PubMed  Google Scholar 

  183. Longo, V. D., and Finch, C. E. (2003. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science, 299, 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  184. Goldsmith, T. C. (2003) The Evolution of Aging: How Darwin’s Dilemma is Affecting Your Chance for a Longer and Healthier Life, iUniverse, Lincoln, Nebraska.

    Google Scholar 

  185. Skulachev, V. P. (1997. Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  186. Campisi, J. (1997. The biology of replicative senescence, Eur. J. Cancer, 33, 703–709.

    Article  CAS  PubMed  Google Scholar 

  187. Campisi, J. (2003. Cancer and ageing: rival demons? Nat. Rev. Cancer, 3, 339–349.

    Article  CAS  PubMed  Google Scholar 

  188. Troen, B. (2003. The biology of aging, Mt. Sinai J. Med., 30, 3–22.

    Google Scholar 

  189. Wright, W. E., and Shay, J. W. (2005. Telomere biology in aging and cancer, J. Am. Geriatr. Soc., 53, 292–294.

    Article  Google Scholar 

  190. Mitteldorf, J. (2013. Telomere biology: cancer firewall or aging clock? Biochemistry (Moscow), 78, 1054–1060.

    Article  CAS  Google Scholar 

  191. Milewski, L. A. K. (2010. The evolution of ageing, Biosci. Horizons, 3, 77–84.

    Article  CAS  Google Scholar 

  192. Parrinello, S., Coppe, J.-P., Krtolica, A., and Campisi, J. (2005. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation, J. Cell Biol., 118, 485–496.

    CAS  Google Scholar 

  193. Coppe, J.-P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P.-Y., and Campisi, J. (2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6, 2853–2568.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Libertini.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 12, pp. 1781-1801.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libertini, G. Phylogeny of aging and related phenoptotic phenomena. Biochemistry Moscow 80, 1529–1546 (2015). https://doi.org/10.1134/S0006297915120019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915120019

Keywords

Navigation