Skip to main content
Log in

Correlation between biological activity and conformational dynamics properties of tetra- and pentapeptides derived from fetoplacental proteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this work, using molecular dynamics simulation, we study conformational and dynamic properties of biologically active penta- and tetrapeptides derived from fetoplacental proteins such as alpha-fetoprotein, pregnancy specific β1-glycoprotein, and carcinoembryonic antigen. Existence of correlation between flexibility of peptide backbone and biological activity of the investigated peptides was shown. It was also demonstrated that flexibility of peptide backbone depends not only on its length, but also on the presence of reactive functional groups in amino acid side chains that participate in intramolecular interactions. Peptides that demonstrate similar biological effects in regulation of proliferation of lymphocytes and expression of differentiation antigens on their surface (LDSYQCT, PYECE, YECE, and YVCE) are characterized by rigidity of their peptide backbone. Increased backbone flexibility in peptides PYQCE, YQCE, SYKCE, YQCT, YQCS, YVCS, YACS, and YACE is correlated with decreased biological activity. Conformational mobility of amino acid residues does not depend on physicochemical properties only, but also on intramolecular interactions. So, evolutionary restrictions should exist to maintain such interactions in the environment of functionally important sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFP:

alpha-fetoprotein

CEA:

carcinoembryonic antigen

2D:

two-dimensional

3D:

three-dimensional

EGF:

epidermal growth factor

MD:

molecular dynamics

PSG:

pregnancy specific β1-glycoprotein

References

  1. Neduva, V., and Russel, R. B. (2005) FEBS Lett., 579, 3342–3345.

    Article  PubMed  CAS  Google Scholar 

  2. Zaretsky, J. Z., and Wreschner, D. H. (2008) Translat. Oncogenomics, 3, 99–136.

    CAS  Google Scholar 

  3. Terentiev, A. A., Mokhosoev, I. M., and Moldogazieva, N. T. (2010) in Human Placenta: Structure and Development, Circulation and Function, Chap. 4 (Berven, E., and Freberg, A., eds.) Nova Science Publishers, Inc., pp. 125–143.

  4. Streydio, C., Lacka, K., Swellens, S., and Vassart, G. (1988) Biochem. Biophys. Res. Commun., 154, 130–137.

    Article  PubMed  CAS  Google Scholar 

  5. Terentiev, A. A. (1997) Vestnik RGMU, 1, 76–79.

    Google Scholar 

  6. Terentiev, A. A., and Moldogazieva, N. T. (2006) Biochemistry (Moscow), 71, 120–132.

    Article  CAS  Google Scholar 

  7. Kazimirsky, A. N., Tagirova, A. N., Salmasi, J. M., Moldogazieva, N. T., Gurina, A. E., and Terentiev, A. A. (2010) Astrakhan. Med. Zh., 1, 106–110.

    Google Scholar 

  8. Kazimirsky, A. N., Salmasi, J. M., Kuptsova, N. V., Tagirova, A. N., Moldogazieva, N. T., and Terentiev, A. A. (2010) Int. J. Exper. Educat., 7, 28–29.

    Google Scholar 

  9. Tagirova, A. K., Terentiev, A. A., Alexandrova, I. A., Moldogazieva, N. T., Salmasi, J. M., Porjadin, G. V., and Kazimirsky, A. N. (2007) Tumor Biol., 28(Suppl. 1), S106.

    Google Scholar 

  10. Terentiev, A. A., Tagirova, A. K., Tutcheva, O., Moldogazieva, N. T., Salmasi, J. M., Kazimirsky, A. N., Riabinina, Z., and Makarov, T. (2010) Tumor Biol., 31(Suppl. 1), S78.

    Google Scholar 

  11. Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol., 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  12. Gohlke, H., Kiel, C., and Case, D. A. (2003) J. Mol. Biol., 330, 891–913.

    Article  PubMed  CAS  Google Scholar 

  13. Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Lou, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005) J. Comput. Chem., 26, 1668–1688.

    Article  PubMed  CAS  Google Scholar 

  14. Shaitan, K. V., Vasiliev, A. K., Saraikin, S. S., and Michailiuk, M. G. (1999) Biofizika (Moscow), 44, 668–675.

    CAS  Google Scholar 

  15. Shaitan, K. V., Tourleigh, Ye. V., Golik, D. N., and Kirpichnikov, M. P. (2006) J. Drug Deliv. Sci. Technol., 16, 253–258.

    CAS  Google Scholar 

  16. Froimowitz, M. (1993) Biotechniques, 14, 1010–1013.

    PubMed  CAS  Google Scholar 

  17. Moldogazieva, N. T., Terentiev, A. A., Kazimirsky, A. N., Antonov, M. Yu., and Shaitan, K. V. (2007) Biochemistry (Moscow), 5, 529–539.

    Article  Google Scholar 

  18. Moldogazieva, N. T., Shaitan, K. V., Tereshkina, K. B., Antonov, M. Yu., and Terentiev, A. A. (2007) Biofizika (Moscow), 4, 611–624.

    Google Scholar 

  19. Pearlman, D. A., Case, D. A., Caldwell, J. W., Seibel, G. L., Singh, U. C., Weiner, P., and Kollman, P. A. (1991) Amber 4.0, University of California, San Francisco.

  20. Cornell, W. D., Cieplak, P., Bayly, C., Gould, I. R., Merz, K. M., Jr., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995) J. Am. Chem. Soc., 117, 5179–5188.

    Article  CAS  Google Scholar 

  21. Dashevsky, V. G. (1974) Conformation of Organic Molecules, Khimiya, Moscow.

    Google Scholar 

  22. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., and Montgomery, J. A., Jr. (1993) J. Comput. Chem., 14, 1347–1352.

    Article  CAS  Google Scholar 

  23. Vesterkhoff, H., and van Dam, K. (1992) Thermodynamics and Regulation of Transformations of Free Energy in Biosystems [Russian translation], Mir, Moscow.

    Google Scholar 

  24. Lemak, A. S., and Balabaev, N. K. (1995) Mol. Simulation, 15, 223–231.

    Article  CAS  Google Scholar 

  25. Lemak, A. S., and Balabaev, N. K. (1996) J. Comput. Chem., 17, 1685–1695.

    Article  CAS  Google Scholar 

  26. Golo, V. L., and Shaitan, K. V. (2002) Biofizika (Moscow), 47, 611–617.

    CAS  Google Scholar 

  27. Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963) J. Mol. Biol., 7, 75–102.

    Article  Google Scholar 

  28. Govariker, V. R., Visvanathan, N. V., and Shridhar, J. (1990) Polymers [Russia translation], Nauka, Moscow.

  29. Moldogazieva, N. T., Shaitan, K. V., Antonov, M. Yu., Vainogradova, I. K., and Terentiev, A. A. (2011) Biochemistry (Moscow), 76, 1321–1336.

    Article  CAS  Google Scholar 

  30. Tereshkina, K. B., Shaitan, K. V., Levtsova, O. V., and Golik, D. N. (2005) Biofizika (Moscow), 50, 974–985.

    CAS  Google Scholar 

  31. Pangbum, M. K. (1992) FEBS Lett., 308, 280–282.

    Article  Google Scholar 

  32. Alexander, P. A., He, Y., Chen, Y., Orban, J., and Bryan, P. A. (2007) Proc. Natl. Acad. Sci. USA, 104, 11963–11968.

    Article  PubMed  CAS  Google Scholar 

  33. Chelia, V., and Blundel, T. (2005) Biochemistry (Moscow), 70, 835–840.

    Article  Google Scholar 

  34. Otaki, J. M., Ienaka, S., Gotoh, T., and Yamamoto, H. (2005) Protein Sci., 14, 617–625.

    Article  PubMed  CAS  Google Scholar 

  35. Otaki, J. M., Tsutsumi, M., Gotoh, T., and Yamamoto, H. (2010) J. Chem. Inf. Model., 50, 690–700.

    Article  PubMed  CAS  Google Scholar 

  36. Nekrasov, A. N. (2004) J. Biomol. Struct. Dyn., 21, 615–623.

    PubMed  CAS  Google Scholar 

  37. Nekrasov, A. N., and Zinchenko, A. A. (2010) J. Biomol. Struct. Dyn., 28, 85–96.

    PubMed  CAS  Google Scholar 

  38. Svirshchevskaya, E., Alekseeva, L., Marchenko, A., Benevolenskii, N., Berzhec, D. M., and Nekrasov, A. N. (2006) J. Bioinform. Comput. Biol., 4, 389–402.

    Article  PubMed  CAS  Google Scholar 

  39. Ruoslahti, E., and Pierschbacher, M. D. (1987) Science, 238, 491–497.

    Article  PubMed  CAS  Google Scholar 

  40. Terentiev, A. A., and Moldogazieva, N. T. (2006) Uspekhi Biol. Khim., 46, 99–148.

    Google Scholar 

  41. Sadana, P., and Park, E. A. (2007) Biochem. J., 403, 511–518.

    Article  PubMed  CAS  Google Scholar 

  42. Solomaha, E., Szeto, F. L., Youself, M. A., and Palfrey, H. C. (2005) J. Biol. Chem., 280, 23147–23156.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Moldogazieva.

Additional information

Published in Russian in Biokhimiya, 2012, Vol. 77, No. 5, pp. 583–602.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldogazieva, N.T., Terentiev, A.A., Antonov, M.Y. et al. Correlation between biological activity and conformational dynamics properties of tetra- and pentapeptides derived from fetoplacental proteins. Biochemistry Moscow 77, 469–484 (2012). https://doi.org/10.1134/S0006297912050070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912050070

Key words

Navigation