Skip to main content
Log in

Study of interaction of XRCC1 with DNA and proteins of base excision repair by photoaffinity labeling technique

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The X-ray repair cross-complementing group 1 (XRCC1) protein plays a central role in base excision repair (BER) interacting with and modulating activity of key BER proteins. To estimate the influence of XRCC1 on interactions of BER proteins poly(ADP-ribose) polymerase 1 (PARP1), apurinic/apyrimidinic endonuclease 1 (APE1), flap endonuclease 1 (FEN1), and DNA polymerase β (Pol β) with DNA intermediates, photoaffinity labeling using different photoreactive DNA was carried out in the presence or absence of XRCC1. XRCC1 competes with APE1, FEN1, and PARP1 for DNA binding, while Pol β increases the efficiency of XRCC1 modification. To study the interactions of XRCC1 with DNA and proteins at the initial stages of BER, DNA duplexes containing a photoreactive group in the template strand opposite the damage were designed. DNA duplexes with 8-oxoguanine or dihydrothymine opposite the photoreactive group were recognized and cleaved by specific DNA glycosylases (OGG1 or NTH1, correspondingly), although the rate of oxidized base excision in the photoreactive structures was lower than in normal substrates. XRCC1 does not display any specificity in recognition of DNA duplexes with damaged bases compared to regular DNA. A photoreactive group opposite a synthetic apurinic/apyrimidinic (AP) site (3-hydroxy-2-hydroxymethyltetrahydrofuran) weakly influences the incision efficiency of AP site analog by APE1. In the absence of magnesium ions, i.e. when incision of AP sites cannot occur, APE1 and XRCC1 compete for DNA binding when present together. However, in the presence of magnesium ions the level of XRCC1 modification increased upon APE1 addition, since APE1 creates nicked DNA duplex, which interacts with XRCC1 more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APE1:

human apurinic/apyrimidinic endonuclease 1

AP site:

apurinic/apyrimidinic site

BER:

base excision repair

dRP:

deoxyribose phosphate residue

F:

3-hydroxyl-2-hydroxymethyltetrahydrofuran

FEN1:

human flap endonuclease 1

NTH1:

human DNA glycosylase, homolog of E. coli endonuclease III

OGG1:

human 8-oxoguanine DNA glycosylase

8-oxoG:

8-oxoguanine

PARP1:

human poly(ADP-ribose) polymerase 1

Pol β:

rat DNA polymerase β

XRCC1:

human X-ray repair cross-complementing group 1 protein

References

  1. Kubota, Y., Nash, R. A., Klungland, A., Schar, P., Barnes, D. E., and Lindahl, T. (1996) EMBO J., 15, 6662–6670.

    PubMed  CAS  Google Scholar 

  2. Marsin, S., Vidal, A. E., Sossou, M., Menissier-de Murcia, J., Le Page, F., Boiteux, S., de Murcia, G., and Radicella, J. P. (2003) J. Biol. Chem., 278, 44068–44074.

    Article  PubMed  CAS  Google Scholar 

  3. Campalans, A., Marsin, S., Nakabeppu, Y., O’connor, T. R., Boiteux, S., and Radicella, J. P. (2005) DNA Repair, 4, 826–835.

    Article  PubMed  CAS  Google Scholar 

  4. Vidal, A. E., Boiteux, S., Hickson, I. D., and Radicella, J. P. (2001) EMBO J., 2, 6530–6539.

    Article  Google Scholar 

  5. Caldecott, K. W., Aoufouchi, S., Johnson, P., and Shall, S. (1996) Nucleic Acids Res., 24, 4387–4394.

    Article  PubMed  CAS  Google Scholar 

  6. Masson, M., Niedergang, C., Schreiber, V., Muller, S., Menissier-de Murcia, J., and de Murcia, G. (1998) Mol. Cell. Biol., 18, 3563–3571.

    PubMed  CAS  Google Scholar 

  7. Schreiber, V., Ame, J. C., Dolle, P., Schultz, I., Rinaldi, B., Fraulob, V., Menissier-de Murcia, J., and de Murcia, G. (2002) J. Biol. Chem., 277, 23028–23036.

    Article  PubMed  CAS  Google Scholar 

  8. Petermann, E., Keil, C., and Oei, S. L. (2006) DNA Repair, 5, 544–555.

    Article  PubMed  CAS  Google Scholar 

  9. Caldecott, K. W., McKeown, C. K., Tucker, J. D., Ljungquist, S., and Thompson, L. H. (1994) Mol. Cell. Biol., 14, 68–76.

    PubMed  CAS  Google Scholar 

  10. Caldecott, K. W., Tucker, J. D., Stanker, L. H., and Thompson, L. H. (1995) Nucleic Acids Res., 23, 4836–4843.

    Article  PubMed  CAS  Google Scholar 

  11. Parsons, J. L., Dianova, I. I., Allinson, S. L., and Dianov, G. L. (2005) Biochemistry, 44, 10613–10619.

    Article  PubMed  CAS  Google Scholar 

  12. Wong, H. K., Kim, D., Hogue, B. A., McNeill, D. R., and Wilson, D. M., 3rd (2005) Biochemistry, 44, 14335–14343.

    Article  PubMed  CAS  Google Scholar 

  13. Marintchev, A., Mullen, M. A., Maciejewski, M. W., Pan, B., Gryk, M. R., and Mullen, G. P. (1999) Nat. Struct. Biol., 6, 884–893.

    Article  PubMed  CAS  Google Scholar 

  14. Mani, R. S., Karimi-Busheri, F., Fanta, M., Caldecott, K. W., Cass, C. E., and Weinfeld, M. (2004) Biochemistry, 43, 16505–16514.

    Article  PubMed  CAS  Google Scholar 

  15. Nazarkina, Zh. K., Petrousseva, I. O., Safronov, I. V., Lavrik, O. I., and Khodyreva, S. N. (2003) Biochemistry (Moscow), 68, 934–942.

    Article  CAS  Google Scholar 

  16. Lebedeva, N. A., Khodyreva, S. N., Favre, A., and Lavrik, O. I. (2003) Biochem. Biophys. Res. Commun., 300, 182–187.

    Article  PubMed  CAS  Google Scholar 

  17. Sukhanova, M. V., Khodyreva, S. N., and Lavrik, O. I. (2004) Biochemistry (Moscow), 69, 558–568.

    Article  CAS  Google Scholar 

  18. Drachkova, I. A., Petrousseva, I. O., Safronov, I. V., Zakharenko, A. L., Shishkin, G. V., Lavrik, O. I., and Khodyreva, S. N. (2001) Bioorg. Khim., 27, 179–204.

    Google Scholar 

  19. Audebert, M., Radicella, J. P., and Dizdaroglu, M. (2000) Nucleic Acids Res., 28, 2672–2678.

    Article  PubMed  CAS  Google Scholar 

  20. Dezhurov, S. V., Khodyreva, S. N., Plekhanova, E. S., and Lavrik, O. I. (2005) Bioconj. Chem., 16, 215–222.

    Article  CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  22. Laemmli, U. K. (1970) Nature, 277, 680–685.

    Article  Google Scholar 

  23. Caldecott, K. W. (2003) DNA Repair, 18, 955–969.

    Article  Google Scholar 

  24. Bruner, S. D., Norman, D. P. G., and Verdine, G. L. (2000) Nature, 403, 859–866.

    Article  PubMed  CAS  Google Scholar 

  25. Zharkov, D. O., Rosenquist, T. A., Gerchman, S. E., and Grollman, A. P. (2000) J. Biol. Chem., 275, 28607–28617.

    Article  PubMed  CAS  Google Scholar 

  26. Nazarkina, Z. K., Khodyreva, S. N., Marsin, S., Lavrik, O. I., and Radicella, J. P. (2007) DNA Repair, 6, 254–264.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, Y., Beard, W. A., Shock, D. D., Prasad, R., Hou, E. W., and Wilson, S. H. (2005) J. Biol. Chem., 280, 3665–3674.

    Article  PubMed  CAS  Google Scholar 

  28. Prasad, R., Beard, W. A., Strauss, P. R., and Wilson, S. H. (1998) J. Biol. Chem., 273, 15263–15270.

    Article  PubMed  CAS  Google Scholar 

  29. Bennet, R. A. O., Wilson, D. M. III, Wong, D., and Demple, B. (1997) Proc. Natl. Acad. Sci. USA, 94, 7166–7169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Khodyreva.

Additional information

Published in Russian in Biokhimiya, 2007, Vol. 72, No. 8, pp. 1078–1089.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM07-120, July 15, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarkina, Z.K., Khodyreva, S.N., Marsin, S. et al. Study of interaction of XRCC1 with DNA and proteins of base excision repair by photoaffinity labeling technique. Biochemistry Moscow 72, 878–886 (2007). https://doi.org/10.1134/S000629790708010X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790708010X

Key words

Navigation