Skip to main content
Log in

Dependence of protective functions of Escherichia coli polyamines on strength of stress caused by superoxide radicals

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mechanisms of antioxidant effect of polyamines were studied in dependence on the strength of superoxide stress. Under conditions of weak stress, polyamines from Escherichia coli cultures were shown to function mainly as a scavenger of free superoxide radicals, whereas under conditions of strong stress they mainly acted as positive modulators of antioxidant genes. Spectrofluorimetry was used to show that both polyamine-dependent mutants and wild type cells treated with inhibitors of polyamine synthesis contained an elevated amount of free oxygen radicals, which could be decreased to the normal level by addition of exogenous polyamines. Under conditions of strong stress, polyamines positively influenced expression of the soxRS regulon genes of antioxidant defense, which was accompanied by an increase in the quantity (activity) of their gene products, such as glucose-6-phosphate dehydrogenase (Zwf) and fumarase (FumC). These effects led to an increase in the number of live cells in the cultures subjected to superoxide stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAB:

1,4-diamino-2-butanone

G6PDH:

glucose-6-phosphate dehydrogenase

PMS:

phenazine methosulfate

References

  1. Aertsen, A., and Michiels, C. W. (2004) Crit. Rev. Microbiol., 30, 263–273.

    Article  PubMed  CAS  Google Scholar 

  2. Aldsworth, T. G., Sharman, R. L., and Dodd, C. E. (1999) Cell. Mol. Life Sci., 56, 378–383.

    Article  PubMed  CAS  Google Scholar 

  3. Albesa, I., Becerra, M. C., Battan, P. C., and Paez, P. L. (2004) Biochem. Biophys. Res. Commun., 317, 605–609.

    Article  PubMed  CAS  Google Scholar 

  4. Messner, K. R., and Imlay, J. A. (1999) J. Biol. Chem., 274, 10119–10128.

    Article  PubMed  CAS  Google Scholar 

  5. Storz, G., and Imlay, J. A. (1999) Curr. Opin. Microbiol., 2, 188–194.

    Article  PubMed  CAS  Google Scholar 

  6. Ding, H. G., and Demple, B. (1998) Biochemistry USA, 37, 17280–17286.

    Article  CAS  Google Scholar 

  7. Tkachenko, A. G., and Chudinov, A. A. (1989) Dokl. Akad. Nauk SSSR, 305, 219–222.

    PubMed  CAS  Google Scholar 

  8. Tkachenko, A. G., Pshenichnov, M. R., Salakhetdinova, O. Ya., and Nesterova, L. Yu. (1999) Mikrobiologiya, 68, 27–32.

    CAS  Google Scholar 

  9. Tkachenko, A. G., Pshenichnov, M. R., and Nesterova, L. Yu. (2001) Mikrobiologiya, 704, 487–494.

    Google Scholar 

  10. Tkachenko, A. G., and Nesterova, L. Yu. (2003) Biochemistry (Moscow), 68, 850–856.

    Article  CAS  Google Scholar 

  11. Ha, H. C., Sirisoma, N. S., Kuppusamy, P., Zweier, J. L., Woster, P. M., and Casero, R. A. (1998) Proc. Natl. Acad. Sci. USA, 95, 11140–11145.

    Article  PubMed  CAS  Google Scholar 

  12. Jung, I. L., Oh, T. J., and Kim, I. G. (2004) Arch. Biochem. Biophys., 418, 125–132.

    Article  CAS  Google Scholar 

  13. Hidalgo, E., and Demple, B. (1997) EMBO J., 16, 1056–1065.

    Article  PubMed  CAS  Google Scholar 

  14. Chattopadhyay, M. K., Tabor, C. W., and Tabor, H. (2003) Proc. Natl. Acad. Sci. USA, 100, 2261–2265.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, J. H. (1992) Experiments in Molecular Genetics, Cold Spring Harbor, New York.

    Google Scholar 

  16. Tkachenko, A. G., Shumkov, M. S., and Akhova, A. V. (2006) Biochemistry (Moscow), 71, 185–193.

    Article  CAS  Google Scholar 

  17. Balasubramaniam, M., Koteswari, A. A., Kumar, R. S., Monickaraj, S. F., Maheswari, J. U., and Mohan, V. (2003) J. Biosci., 28, 715–721.

    Google Scholar 

  18. Liu, F., Ooi, V. E. C., and Chang, S. T. (1997) Life Sci., 60, 763–771.

    Article  PubMed  CAS  Google Scholar 

  19. Liochev, S. I., and Fridovich, I. (1992) Proc. Natl. Acad. Sci. USA, 89, 5892–5896.

    Article  PubMed  CAS  Google Scholar 

  20. Tkachenko, A. G. (2004) Biochemistry (Moscow), 69, 188–194.

    Article  CAS  Google Scholar 

  21. Tkachenko, A., Nesterova, L., and Pshenichnov, M. (2001) Arch. Microbiol., 176, 155–157.

    Article  PubMed  CAS  Google Scholar 

  22. Pastre, D., Pietrement, O., Landousy, F., Hamon, L., Sorel, I., David, M. O., Delain, E., Zozime, A., and LeCam, E. (2006) Eur. Biophys. J. Biophys. Lett., 35, 214–223.

    CAS  Google Scholar 

  23. Lindemose, S., Nielsen, P. E., and Mollegaard, N. E. (2005) Nucleic Acids Res., 33, 1790–1803.

    Article  PubMed  CAS  Google Scholar 

  24. Igarashi, K., and Kashiwagi, K. (2006) J. Biochem. (Tokyo), 139, 11–16.

    CAS  Google Scholar 

  25. Tang, Y., Quail, M. A., Artymiuk, P. J., Guest, J. R., and Green, J. (2002) Microbiol. Sgm., 148, 1027–1037.

    CAS  Google Scholar 

  26. Yeo, W. S., Lee, J. H., Lee, K. C., and Roe, J. H. (2006) Mol. Microbiol., 61, 206–218.

    Article  PubMed  CAS  Google Scholar 

  27. Lu, C. H., Albano, C. R., Bentley, W. E., and Rao, G. V. (2005) Biotechnol. Bioeng., 89, 574–587.

    Article  PubMed  CAS  Google Scholar 

  28. Smith, K., Borges, A., Ariyanayagam, M. R., and Fairlamb, A. H. (1995) Biochem. J., 312, 465–469.

    PubMed  CAS  Google Scholar 

  29. Lin, C. H., Kwon, D. S., Bollinger, J. M., and Walsh, C. T. (1997) Biochemistry, 36, 14930–14938.

    Article  PubMed  CAS  Google Scholar 

  30. Travers, A., and Muskhelishvili, G. (2005) Nat. Rev. Microbiol., 3, 157–169.

    Article  PubMed  CAS  Google Scholar 

  31. Leng, F. F., and McMacken, R. (2002) Proc. Natl. Acad. Sci. USA, 99, 9139–9144.

    Article  PubMed  CAS  Google Scholar 

  32. Chander, M., and Demple, B. (2004) J. Biol. Chem., 279, 41603–41610.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Tkachenko.

Additional information

Original Russian Text © A. G. Tkachenko, M. V. Fedotova, 2007, published in Biokhimiya, 2007, Vol. 72, No. 1, pp. 128–136.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM06-207, December 3, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachenko, A.G., Fedotova, M.V. Dependence of protective functions of Escherichia coli polyamines on strength of stress caused by superoxide radicals. Biochemistry (Moscow) 72, 109–116 (2007). https://doi.org/10.1134/S0006297907010130

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907010130

Key words

Navigation