Skip to main content
Log in

Specific features of changes in levels of endogenous respiration substrates in Saccharomyces cerevisiae cells at low temperature

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The rate of endogenous respiration of Saccharomyces cerevisiae cells incubated at 0°C under aerobic conditions in the absence of exogenous substrates decreased exponentially with a half-period of about 5 h when measured at 30°C. This was associated with an indirectly shown decrease in the level of oxaloacetate in the mitochondria in situ. The initial concentration of oxaloacetate significantly decreased the activity of succinate dehydrogenase. The rate of cell respiration in the presence of acetate and other exogenous substrates producing acetyl-CoA in mitochondria also decreased, whereas the respiration rate on succinate increased. These changes were accompanied by an at least threefold increase in the L-malate concentration in the cells within 24 h. It is suggested that the increase in the L-malate level in the cells and the concurrent decrease in the oxaloacetate level in the mitochondria should be associated with a deceleration at 0°C of the transport of endogenous respiration substrates from the cytosol into the mitochondria. This deceleration is likely to be caused by a high Arrhenius activation energy specific for transporters. The physiological significance of L-malate in regulation of the S. cerevisiae cell respiration is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eaton, N. R. (1960) Arch. Biochem. Biophys., 88, 17–25.

    Article  CAS  PubMed  Google Scholar 

  2. Panek, A. D., and Mattoon, J. R. (1977) Arch. Biochem. Biophys., 183, 306–316.

    Article  CAS  PubMed  Google Scholar 

  3. Enjalbert, B., Parrou, J. L., Vincent, O., and Francois, J. (2000) Microbiology, 146, 2685–2694.

    CAS  PubMed  Google Scholar 

  4. Lillie, S. H., and Pringle, J. B. (1980) J. Bacteriol., 143, 1384–1394.

    CAS  PubMed  Google Scholar 

  5. Wilson, W. A., Wang, Z., and Roach, P. J. (2002) Mol. Cell. Proteomics, 1, 232–242.

    CAS  PubMed  Google Scholar 

  6. Sillje, H. H. W., Paalman, J. W. G., ter Schure, E. G., Olsthoorn, S. Q. B., Verkleij, A. J., Boonstra, J., and Verrips, C. T. (1999) J. Bacteriol., 181, 396–400.

    CAS  PubMed  Google Scholar 

  7. Huang, D., Wilson, W. A., and Roach, P. J. (1997) J. Biol. Chem., 272, 22495–22501.

    CAS  PubMed  Google Scholar 

  8. Jules, M., Guillou, V., Francois, J., and Parrou, J.-L. (2004) Appl. Environ. Microbiol., 70, 2771–2778.

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Torrado, R., Gimeno-Alcaniz, J. V., and Matallana, E. (2002) Appl. Environ. Microbiol., 68, 3339–3344.

    Article  CAS  PubMed  Google Scholar 

  10. Samokhvalov, V. F., Melnikov, G. V., and Ignatov, V. V. (2004) Mikrobiologiya, 73, 449–454.

    CAS  Google Scholar 

  11. Parrou, J. L., Teste, M.-A., and Francois, J. (1997) Microbiology, 143, 1891–1900.

    CAS  PubMed  Google Scholar 

  12. Lin, K., Hwang, P. K., and Fletterick, R. J. (1995) J. Biol. Chem., 270, 26833–26839.

    CAS  PubMed  Google Scholar 

  13. Walker, M. E., Val, D. L., Rohde, M., Devenish, R. J., and Wallace, J. C. (1991) Biochem. Biophys. Res. Commun., 176, 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  14. Bakker, B. M., Overkamp, B. M., van Maris, A. J. A., Kotter, P., Luttik, M. A. H., van Dijken, J. P., and Pronk, J. T. (2001) FEMS Microbiol. Rev., 25, 15–37.

    CAS  PubMed  Google Scholar 

  15. Palmieri, L., Vozza, A., Agrimi, G., De Marco, V., Runswick, M., Palmieri, F., and Walker, J. E. (1999) J. Biol. Chem., 274, 22184–22190.

    Article  CAS  PubMed  Google Scholar 

  16. Kakhniashvili, D., Mayor, J. A., Gremse, D. A., Xu, Y., and Kaplan, R. S. (1997) J. Biol. Chem., 272, 4516–4521.

    CAS  PubMed  Google Scholar 

  17. Phelps, A., Schobert, C. T., and Wohlrab, H. (1991) Biochemistry, 30, 248–252.

    CAS  Google Scholar 

  18. Abramov, Sh. A., Kotenko, S. Ts., Aliverdieva, D. A., Dalgatova, B. I., Mammaev, A. T., and Peisakhova, D. S. (1986) The USSR Author’s Certificate No. 1294998, Byull. Izobret. (1987) No. 3, 111.

  19. Sholtz, K. F., and Ostrovskii, D. N. (1975) in Methods of Modern Biochemistry (Kretovisch, V. L., and Sholtz, K. F., eds.) [in Russian], Nauka, Moscow, pp. 52–58.

    Google Scholar 

  20. Rutter, W. J., and Lardi, H. A. (1958) J. Biol. Chem., 233, 374–382.

    CAS  PubMed  Google Scholar 

  21. Gonzalez, B., Francois, J., and Renaud, M. (1997) Yeast, 13, 1347–1355.

    Article  CAS  PubMed  Google Scholar 

  22. Hans, M. A., Heinzle, E., and Wittmann, C. (2001) Appl. Microbiol. Biotechnol., 56, 776–779.

    Article  CAS  PubMed  Google Scholar 

  23. Okuda, J., and Miwa, I. (1973) in Methods of Biochemical Analysis, Vol. 21 (Glick, D., ed.) John Wiley & Sons, New York, pp. 155–189.

    Google Scholar 

  24. Polakis, E. S., Bartley, W., and Meek, G. A. (1965) Biochem. J., 97, 298–302.

    CAS  Google Scholar 

  25. Andersson, I., Norkrans, B., and Odham, G. (1973) Analyt. Biochem., 53, 629–638.

    CAS  PubMed  Google Scholar 

  26. Norkrans, B., and Tunblad-Johansson, I. (1977) Arch. Microbiol., 115, 127–133.

    Article  CAS  PubMed  Google Scholar 

  27. Zinser, E., and Daum, G. (1995) Yeast, 11, 493–536.

    Article  CAS  PubMed  Google Scholar 

  28. Wojtczak, L., Wojtczak, A. B., and Ernster, L. (1969) Biochim. Biophys. Acta, 191, 10–21.

    CAS  PubMed  Google Scholar 

  29. Mandrik, K. A., Vonsovich, V. A., and Vinogradov, V. V. (1983) Ukr. Biokhim. Zh., 55, 503–506.

    CAS  PubMed  Google Scholar 

  30. Vinogradov, A. D. (1986) Biokhimiya, 51, 1944–1973.

    CAS  Google Scholar 

  31. Sholtz, K. F. (1994) Usp. Biol. Khim., 34, 167–187.

    Google Scholar 

  32. Chappell, J. B., and Haarhoff, K. N. (1967) in Biochemistry of Mitochondria (Slater, E. C., et al., eds.) Academic Press, London-New York, pp. 75–91.

    Google Scholar 

  33. Palmieri, L., Palmieri, F., Runswick, M. J., and Walker, J. E. (1996) FEBS Lett., 399, 299–302.

    Article  CAS  PubMed  Google Scholar 

  34. Briquet, M. (1977) Biochim. Biophys. Acta, 459, 290–299.

    CAS  PubMed  Google Scholar 

  35. Halestrap, A. P. (1975) Biochem. J., 148, 85–96.

    CAS  PubMed  Google Scholar 

  36. Boles, E., de Jong-Gubbels, P., and Pronk, J. T. (1998) J. Bacteriol., 180, 2875–2882.

    CAS  PubMed  Google Scholar 

  37. Kucynski, J. T., and Radler, F. (1982) Arch. Microbiol., 131, 266–270.

    Google Scholar 

  38. Luttik, M. H., Overkamp, K. M., Kotter, P., de Vries, S., van Dijken, J. P., and Pronk, J. T. (1998) J. Biol. Chem., 273, 24529–24534.

    Article  CAS  PubMed  Google Scholar 

  39. Purwin, C., Nicolay, K., Scheffers, W. A., and Holzer, H. (1986) J. Biol. Chem., 261, 8744–8749.

    CAS  PubMed  Google Scholar 

  40. Bondarenko, D. I., Aliverdieva, D. A., Mamaev, D. V., and Sholtz, K. F. (2004) Dokl. Akad. Nauk, 399, 693–695.

    Google Scholar 

  41. Lodi, T., Fontanesi, F., Ferrero, I., and Donnini, C. (2004) Gene, 339, 111–119.

    Article  CAS  PubMed  Google Scholar 

  42. Salmon, J. M. (1987) Biochim. Biophys. Acta, 901, 30–34.

    CAS  PubMed  Google Scholar 

  43. Camarasa, C., Budard, F., Bony, M., Barre, P., and Dequin, S. (2001) Appl. Environ. Microbiol., 67, 4144–4151.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D. A. Aliverdieva, D. V. Mamaev, L. S. Lagutina, K. F. Sholtz, 2006, published in Biokhimiya, 2006, Vol. 71, No. 1, pp. 50–58.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM05-083, October 23, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliverdieva, D.A., Mamaev, D.V., Lagutina, L.S. et al. Specific features of changes in levels of endogenous respiration substrates in Saccharomyces cerevisiae cells at low temperature. Biochemistry (Moscow) 71, 39–45 (2006). https://doi.org/10.1134/S0006297906010056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906010056

Key words

Navigation