Skip to main content
Log in

A systems approach to studying multiconnected automated control systems based on frequency methods

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We analyze the development of frequency methods of studying multiconnected control systems in the Ufa scientific school of control theory. They are based on the description method for multiconnected automated control systems for complex dynamical systems via individual characteristics of their subsystems and characteristics of the multidimensional connecting elements between them proposed by academician B.N. Petrov and his pupils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasovskii, A.A., Two-Channel Automatic Regulation Systems with Antisymmetric Cross Connections, Autom. Remote Control, 1957, vol. 18, no. 2, pp. 139–150.

    Google Scholar 

  2. Meerov, M.V., Sistemy mnogosvyaznogo regulirovaniya (Multiconnected Control Systems), Moscow: Nauka, 1965.

    Google Scholar 

  3. Morozovskii, V.G., Mnogosvyaznye sistemy avtomaticheskogo regulirovaniya (Multiconnected Automated Control Systems), Moscow: Energiya, 1970.

    Google Scholar 

  4. Chinaev, P.I., Metody analiza i sinteza mnogomernykh avtomaticheskikh sistem (Analysis and Synthesis of Multidimensional Automated Systems), Kiev: Tekhnika, 1969.

    Google Scholar 

  5. Bodner, V.A., Sistemy upravleniya letatel’nymi apparatami (Control Systems for Flying Vehicles), Moscow: Mashinostroenie, 1973.

    Google Scholar 

  6. Yanushevskii, R.T., Teoriya lineinykh optimal’nykh mnogosvyaznykh sistem upravleniya (Theory of Linear Optimal Multiconnected Control Systems), Moscow: Nauka, 1973.

    Google Scholar 

  7. Katkovnik, V.Ya. and Poluektov, R.A., Mnogomernye diskretnye sistemy upravleniya (Multidimensional Discrete Control Systems), Moscow: Nauka, 1966.

    Google Scholar 

  8. Sobolev, O.S., Metody issledovaniya lineinykh mnogosvyaznykh sistem (Methods for Studying Linear Multiconnected Systems), Moscow: Energoatomizdat, 1985.

    Google Scholar 

  9. Baranchuk, E.I., Vzaimosvyazannye i mnogokonturnye reguliruemye sistemy (Interconnected and Multicircuit Controlled Systems), Leningrad: Energiya, 1968.

    Google Scholar 

  10. Boksenbom, A. and Hood, R., General Algebraic Method Applied to Control Analysis of Complex Engine Types, NASA, 1950, Tech. Rept. 980.

    Google Scholar 

  11. Mesarovic, M.D., The Control of Multivariable Systems, New York: Willey, 1960.

    Google Scholar 

  12. Kavanagh, R.J., The Application of Matrix Methods to Multivariable Control Systems, J. Franklin Inst., 1957, vol. 262(9), pp. 349–367.

    MathSciNet  Google Scholar 

  13. Bohn, E.V., Design and Synthesis Methods for a Class of Multivariable Feedback Control Systems Based on Single Variable Methods, Trans. AIEE, 1962, vol. 81, no. 2, pp. 109–115.

    Google Scholar 

  14. Rosenbrock, H.H., State-Space and Multivariable Theory, London: Nelson, 1970.

    MATH  Google Scholar 

  15. Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw-Hill, 1969. Translated under the title Ocherki po matematicheskoi teorii sistem, Moscow: Mir, 1971.

    MATH  Google Scholar 

  16. Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1979. Translated under the title Lineinye mnogomernye sistemy upravleniya. Geometricheskii podkhod, Moscow: Nauka, 1980.

    Book  MATH  Google Scholar 

  17. MacFarlane, A.G.J., Multivariable Control System Design Techniques: A Guided Tour, Proc. IEEE, 1970, vol. 117, no. 5, pp. 1039–1047.

    MathSciNet  Google Scholar 

  18. Polyak, B.T. and Tsypkin, Ya.Z., Stability and Robust Stability of Uniform Systems, Autom. Remote Control, 1996, vol. 57, no. 11, part 1, pp. 1606–1617.

    MathSciNet  MATH  Google Scholar 

  19. Gasparyan, O.N., Linear and Nonlinear Multivariable Feedback Control: A Classical Approach, New York: Wiley, 2008.

    Book  Google Scholar 

  20. Garcia, D., Karimi, A., and Longchamp, R., PID Controller Design for Multivariable System Using Gershgorin Bands, IFAC World Congress, Prague, July 2005.

    Google Scholar 

  21. Wang, Q.-G. and Nie, Z.-Y., PID Control for MIMO Processes, in PID Control in the Third Millennium, Advances in Industrial Control, London: Springer, 2012, pp. 177–204.

    Chapter  Google Scholar 

  22. Nelineinye sistemy. Chastotnye i matrichnye neravenstva (Nonlinear Systems. Frequency and Matrix Inequalities), Gelig, A.Kh., Leonov, G.A., and Fradkov, A.L., Eds., Moscow: Fizmatlit, 2008.

    Google Scholar 

  23. Petrov, B.N., Cherkasov, B.A., Il’yasov, B.G., and Kulikov, G.G., Frequential Method of Analysis and Synthesis for Multidimensional Automated Control Systems, Dokl. Akad. Nauk USSR, 1979, vol. 247, no. 2, pp. 304–307.

    MathSciNet  Google Scholar 

  24. Designing Automated Control Systems for Gas Turbine Engines (Normal and Emergency Modes), Petrov, B.N., Ed., Moscow: Mashinostroenie, 1981.

    Google Scholar 

  25. Il’yasov, B.G., Kabal’nov, Yu.S., and Kolushov, V.V., On Constructing Stability Regions for MACS in the Phase Response Plane of Its Separate Subsystems, Tekh. Kibern., 1990, no. 1, pp. 18–25.

    Google Scholar 

  26. Il’yasov, B.G. and Kabal’nov, Yu.S., An Investigation into the Stability of Single-Type Multiply Connected Automatic Control Systems with Holonomic Ties between Subsystems, Autom. Remote Control, 1995, vol. 56, no. 8, part 1, pp. 1120–1125.

    MathSciNet  MATH  Google Scholar 

  27. Il’yasov, B.G., Saitova, G.A., and Khalikova, E.A., Analyzing Stability Reserves in Uniform Multiconnected Control Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2009, no. 4, pp. 4–12.

    Google Scholar 

  28. Il’yasov, B.G., Denisova, E.V., and Saitova, G.A., Analyzing Periodic Motions in Nonlinear Uniform Multiconnected Automated Control Systems, Mekhatronika, 2001, no. 7, pp. 29–34.

    Google Scholar 

  29. Il’yasov, B.G., Munasypov, R.A., Saitova, G.A., et al., Analyzing Periodic Motions in Multiconnected Systems with Fuzzy Controllers in Separate Subsystems, Mekhatronika, Avtomatiz., Upravlen., 2004, no. 8, pp. 24–29.

    Google Scholar 

  30. Il’yasov, B.G., Saitova, G.A., and Nazapov, A.Sh., On One Approach to Constructing Adaptive Multiconnected Automated Control Systems for Complex Dynamical Objects, Mekhatronika, Avtomatiz., Upravlen., 2010, no. 8, pp. 13–20.

    Google Scholar 

  31. Il’yasov, B.G., Saitova, G.A., and Nazapov, A.Sh., A Reconfiguration Algorithm for the Structure of a Multiconnected Automated Control System from the Stability Condition with Frequency-Based Methods, Vest. UGATU, 2012, vol. 16, no. 3(48), pp. 3–10.

    Google Scholar 

  32. Babak, S.F., Vasil’ev, V.I., Il’yasov, B.G., et al., Osnovy teorii mnogosvyaznykh sistem avtomaticheskogo upravleniya letatel’nymi apparatami (Fundamentals of the Theory of Multiconnected Automated Control Systems for Flying Vehicles. Textbook), Krasil’shchikov, M.N., Ed., Moscow: Mosk. Aviats. Inst., 1995.

  33. Kusimov, S.T., Il’yasov, B.G., Vasil’ev, V.I., et al., Upravlenie dinamicheskimi sistemami v usloviyakh neopredelennosti (Dynamical Systems Control under Uncertainty), Moscow: Nauka, 1998.

    Google Scholar 

  34. Intellektual’nye sistemy upravleniya (Intelligent Control Systems), Vasil’ev, S.N., Ed., Moscow: Mashinostroenie, 2010.

    Google Scholar 

  35. Kusimov, S.T., Il’yasov, B.G., Vasil’ev, V.I., et al., Problemy proektirovaniya i razvitiya sistem avtomaticheskogo upravleniya i kontrolya GTD (Problems of Design and Development of Automated Control and Testing Systems for GTD), Moscow: Mashinostroenie, 1999.

    Google Scholar 

  36. Intellektual’nye sistemy upravleniya i kontrolya gazoturbinnykh dvigatelei (Intelligent Control and Testing Systems for Gas Turbine Engines), Vasil’ev, S.N., Ed., Moscow: Mashinostroenie, 2008.

    Google Scholar 

  37. Optimizatsiya mnogomernykh sistem upravleniya gazoturbinnykh dvigatelei letatel’nykh apparatov (Optimizing Multidimensional Control Systems for Gas Turbine Engines of Flying Vehicles), Shevyakov, A.A. and Mart’yanova, T.S., Eds., Moscow: Mashinostroenie, 1989.

    Google Scholar 

  38. Vasil’ev, V.I. and Il’yasov, B.G., Intellektual’nye sistemy upravleniya. Teoriya i praktika (Intelligent Control Systems. Theory and Practice. Textbook), Moscow: Radiotekhnika, 2009.

    Google Scholar 

  39. Il’yasov, B.G., Saitova, G.A., and Khalikova, E.A., Analyzing the Stability of Heterogeneous Multiconnected Automated Control Systems, in Mekhatronika, avtomatizatsiya i upravlenie (Proc. Intl. Sci.-Tech. Conf.), Taganrog: TTI YuFU Press, 2007, pp. 76–81.

    Google Scholar 

  40. Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo upravleniya (Theory of Automated Control Systems), St. Petersburg: Professiya, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.G. Il’yasov, G.A. Saitova, 2013, published in Avtomatika i Telemekhanika, 2013, No. 3, pp. 173–191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il’yasov, B.G., Saitova, G.A. A systems approach to studying multiconnected automated control systems based on frequency methods. Autom Remote Control 74, 456–470 (2013). https://doi.org/10.1134/S0005117913030107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913030107

Keywords

Navigation