Skip to main content
Log in

Stability margins of the systems of optimal and modal control

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to the systems of H -suboptimal and modal control and the causes of their small phase and magnitude margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  2. Bhattcharyya, S.P., Chapellat, H., and Keel, L.H., Robust Control. The Parametric Approach, New York: Prentice Hall, 1995.

    Google Scholar 

  3. Letov, A.M., Analytical Design of Controllers. I–IV, Avtom. Telemekh., 1960, no. 4, pp. 436–441; no. 5, pp. 561–568; no. 6, pp. 661–665; 1961, no. 4, pp. 425–435.

  4. Kalman, R.E., Contributions to the Theory of Optimal Control, Bullet Soc. Mat. Mech., 1960, vol. 5, no. 1, pp. 102–119.

    Google Scholar 

  5. Anderson, B.D.O. and Moor, J.B., Linear System Optimization with Prescribed Degree of Stability, Proc. Inst. Eng., 1969, vol. 116, no. 2, pp. 100–106.

    Google Scholar 

  6. Aleksandrov, A.G., Frequency Characteristics of the Optimal Linear Control Systems, Avtom. Telemekh., 1969, no. 9, pp. 176–181.

  7. Aleksandrov, A.G., Degree of Robustness of the System with Restorers of Phase Variables, in “Analiticheskie metody sinteza kontrollerov” (Analytical Methods of Controller Design), Saratov: Sarat. Politekhn. Inst., 1977, no. 2, pp. 105–118.

    Google Scholar 

  8. Doyle, J.C., Guaranteed Margins for LQG-regulators, IEEE Trans. Automat. Control, 1978, vol. AC-23, no. 4, pp. 756–757.

    Article  Google Scholar 

  9. Doyle, J.C. and Stein, G., Robustness with Observes, IEEE Trans. Automat. Control, 1979, vol. 24, no. 1, pp. 607–611.

    Article  MATH  Google Scholar 

  10. Aleksandrov, A.G., Analytical Design of the Controller Transfer Matrices by the Frequency Performance Criteria. I, Avtom. Telemekh., 1971, no. 12, pp. 12–20.

  11. Safonov, M.G. and Athans, M., Gain and Phase Margin for Multi-loop LQG Regulators, IEEE Trans. Automat. Control, 1977, vol. AC-22, no. 2, pp. 173–179.

    Article  Google Scholar 

  12. Chestnov, V.N., On Possible Instability of the Controlled Systems and Design of Controllers with Regard for the Parametric Perturbations, in “Analiticheskie metody sinteza kontrollerov” (Analytical Methods of Controller Design), Saratov: Sarat. Politekhn. Inst., 1984, pp. 26–35.

    Google Scholar 

  13. Aleksandrov, A.G., Degree of Robustness and Frequency Performance of Automatic Control, in “Analiticheskie metody sinteza kontrollerov” (Analytical Methods of Controller Design), Saratov: Sarat. Politekhn. Inst., 1976, no. 1, pp. 14–26.

    Google Scholar 

  14. Doyle, J.C., Glover, K., Khagonekar, P.P., and Franis, B.A., State-space Solution to Standard H 2 and H Control Problem, IEEE Trans. Automat. Control, 1989, vol. 34, no. 8, pp. 831–846.

    Article  MATH  Google Scholar 

  15. Aleksandrov, A.G., Robustness Criteria for the Nonstationary Control Systems, in “Analiticheskie metody sinteza kontrollerov” (Analytical Methods of Controller Design), Saratov: Sarat. Politekhn. Inst., 1980, pp. 3–14.

    Google Scholar 

  16. Aleksandrov, A.G., Analytical Design of the Controller Transfer Matrices by the Frequency Performance Criteria. II, Avtom. Telemekh., 1972, no. 2, pp. 17–29.

  17. Lhentomaki, N.A., Sandell, N.R., and Athans, M., Robustness Results in Linear-quadratic Gaussian Based Multivariable Control Design, IEEE Trans. Automat. Control, 1981, vol. 26, no. 1, pp. 75–92.

    Article  Google Scholar 

  18. Aleksandrov, A.G. and Khlebalin, N.A., Analytical Design of Controllers under Incomplete Information about the Parameters of the Controlled Plant, in “Analiticheskie metody sinteza kontrollerov” (Analytical Methods of Controller Design), Saratov: Sarat. Politekhn. Inst., 1981, pp. 138–147.

    Google Scholar 

  19. Alexandrov, A.G., Guaranteed Stabilized Plant, in Eur. Control Conf. ECC’03, Cambridge, 2003.

  20. Chestnov, V.N., Synthesis of Controllers for Multivariate Systems with a Given Radius of Stability Margin by the H -Optimization Method, Avtom. Telemekh., 1999, no. 7, pp. 100–109.

  21. Agafonov, P.A. and Chestnov, V.N., Simultaneous Maintenance of the Input and Output Stability Margins of the Multivariable Plant Based of the H Approach, Avtom. Telemekh., 2004, no. 9, pp. 110–119.

  22. Keel, L. and Bhattacharyya, S.P., Robust, Fragile, or Optimal?, IEEE Trans. Automat. Control, 1997, vol. 42, no. 8, pp. 1098–1105.

    Article  MATH  Google Scholar 

  23. Doyle, J.C., Franis, B.A., and Tannenbaum, A.R., Feedback Control Theory, New York: MacMillan, 1992.

    Google Scholar 

  24. Anderson, B.D.O., From Youla-Kucera to Identification, Adaptive and Nonlinear Control, in 13 World Congr. of IFAC, 1996, San Francisco, USA, pp. 39–59.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Aleksandrov, 2007, published in Avtomatika i Telemekhanika, 2007, No. 8, pp. 4–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, A.G. Stability margins of the systems of optimal and modal control. Autom Remote Control 68, 1296–1308 (2007). https://doi.org/10.1134/S0005117907080024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117907080024

PACS number

Navigation