Skip to main content
Log in

Design of a stable cell line producing recombinant darbepoetin alpha based on CHO cells

  • Producers, Biology, Selection, Genetic Engineering
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A stable cell line that is based on CHO cells and produces 100 mg per liter of culture medium of recombinant darbepoetin alpha with a target glycosylated isoforms effective yield of about 30% has been selected. The expression product of the cell line was characterized and compared to the originator (Aranesp, Amgen). It was shown that the obtained preparation contained all isoforms characteristic of the originator. The created cell line can be used for the development of industrial cultivation and a purification scheme for recombinant darbepoetin alpha production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

High Performance Liquid Chromatography

DARB:

darbepoetin alfa

ELISA:

enzyme-linked immunosorbent assay

IEF:

isoelectric focusing

CCF:

cell culture fluid

CZE:

capillary zone electrophoresis

PAGE:

polyacrylamide gel

rhEPO:

recombinant human erythropoietin

EPO:

erythropoietin

CHO :

Chinese hamster ovary cells

CMV:

cytomegalovirus

SDS:

sodium dodecyl sulfate

References

  1. REBPG for the Management of Anemia in Patients with Chronic Renal Failure, Anemiya, 2005, vol. 3, pp. 1–60.

  2. Egrie, J.C. and Browne, J.K., Development and characterization of novel erythropoiesis stimulating protein (NESP), Br. J. Cancer, 2001, vol. 84, no. 1, pp. 3–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cases, A., Darbepoetin alfa: a novel erythropoiesisstimulating protein, Drugs Today (Bare), 2003, vol. 39, pp. 477–495.

    Article  CAS  Google Scholar 

  4. Macdougall, I.C., Darbepoetin alfa: a new therapeutic agent for renal anemia, Kidney Int. Suppl., 2002, vol. 80, pp. 55–61.

    Article  PubMed  Google Scholar 

  5. Carrera, F., Disney, A., and Molina, M., Extended dosing intervals with erythropoiesis-stimulating agents in chronic kidney disease: a review of clinical data, Nephrol. Dial. Transplant., 2007, vol. 22, no. 4, pp. 19–30.

    Google Scholar 

  6. Smith, R., Applications of darbepoietin-alpha, a novel erythropoiesis-stimulating protein, in oncology, Curr. Opin. Hematol., 2002, vol. 9, pp. 228–233.

    Article  PubMed  Google Scholar 

  7. Helenius, A. and Aebi, M., Intracellular functions of N-linked glycans, Science, 2001, vol. 291, pp. 2364–2369.

    Article  CAS  PubMed  Google Scholar 

  8. Sinclair, A.M. and Elliott, S., Glycoengineering; the effect of glycosylation on the properties of therpautic proteins, J. Pharm. Sci., 2005, vol. 94, pp. 1626–1635.

    Article  CAS  PubMed  Google Scholar 

  9. Byrne, B., Donohoe, G.G., and O’Kennedy, R., Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells, Drug. Discov. Today, 2007, vol. 12, pp. 319–326.

    Article  CAS  PubMed  Google Scholar 

  10. Wasley, L.C., Timony, G., Murtha, P., Stoudemire, J., Dorner, A.J., Caro, J., Krieger, M., and Kaufman, R.J., The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin, Blood, 1991, vol. 77, pp. 2624–2632.

    CAS  PubMed  Google Scholar 

  11. Elliott, S., Lorenzini, T., Asher, S., Aoki, K., Brankow, D., and Buck, L., Enhancement of therapeutic protein in vivo activities through glycoengineering, Nat. Biotechnol., 2003, vol. 21, pp. 414–421.

    Article  CAS  PubMed  Google Scholar 

  12. Andresen, D.C. and Krummen, L., Recombinant protein expression for therapeutic applications, Curr. Opin. Biotechnol., 2002, vol. 13, pp. 117–123.

    Article  Google Scholar 

  13. Butler, M., Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals, Appl. Microbiol. Biotechnol., 2005, vol. 68, pp. 283–291.

    Article  CAS  PubMed  Google Scholar 

  14. Wurm, F.M., Production of recombinant protein therapeutics in cultivated mammalian cells, Nat. Biotechnol., 2004, vol. 22, pp. 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  15. Chu, L. and Robinson, D., Industrial choices for protein production by large-scale cell culture, Curr. Opin. Biotechnol., 2001, vol. 12, pp. 180–187.

    Article  CAS  PubMed  Google Scholar 

  16. Xie, L., Zhou, W., and Robinson, D., Protein production by large-scale mammalian cell culture, New Compr. Biochem., 2003, vol. 38, pp. 605–623.

    Article  CAS  Google Scholar 

  17. Sinacore, M.S., Charlebois, T.S., Harrison, S., Brennan, S., Richards, T., and Hamilton, M., CHO DUKX cell lineages preadapted to growth in serum-free suspension culture enable rapid development of cell culture processes for the manufacture of recombinant proteins, Biotechnol. Bioeng., 1996, vol. 52, pp. 518–528.

    Article  CAS  PubMed  Google Scholar 

  18. Shukurov, R.R., Kazachenko, K.Yu., Kozlov, D.G., Nurbakov, A.A., Sautkina, E.N., Khamitov, R.A., and Seregin, Yu.A., Optimization of gene constructs for darbepoetin expression in mammalian cells, Biotekhnologiya, 2013, no. 2, pp. 34–45.

    Google Scholar 

  19. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 4350–4354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Croset, A., Delafosse, L., Gaudry, J.P., Arod, C., Glez, L., and Losberger, C., Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells, J. Biotechnol., 2012, vol. 161, pp. 336–348.

    Article  CAS  PubMed  Google Scholar 

  22. Lacuna, I., Lara-Quintanar, P., Moya, G., Sanz, J., Diez-Masa, J.C., and De Frutos, M., Selection of migration parameters for a highly reliable assignment of bands of isoforms of erythropoietin separated by capillary electrophoresis, Electrophoresis, 2004, vol. 25, pp. 1569–1579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Shukurov.

Additional information

Original Russian Text © R.R. Shukurov, N.V. Lobanova, I.N. Savinova, I.G. Vorobyova, A.A. Nurbakov, L.V. Ermolina, N.V. Orlova, A.G. Mosina, L.P. Antonova, R.A. Khamitov, Yu.A. Seryogin, 2013, published in Biotekhnologiya, 2013, No. 2, pp. 46–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukurov, R.R., Lobanova, N.V., Savinova, I.N. et al. Design of a stable cell line producing recombinant darbepoetin alpha based on CHO cells. Appl Biochem Microbiol 50, 812–818 (2014). https://doi.org/10.1134/S0003683814090063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814090063

Keywords

Navigation