Skip to main content
Log in

Isolation and identification of anticandidal compound from Streptomyces sp. VITPK9

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Candida infections are frequently reported in both HIV and cancer patients. Recent reports have shown that Candida participates in malignant transformation of oral fibrosis. The aim of the present study was to isolate and to identify anticandidal compound from soil Streptomyces sp. VITPK9. It was isolated from a brine spring of Manipur located in Thoubal district, Manipur, India. The ethyl acetate extract from culture supernatant of Streptomyces sp. VITPK9 was prepared and purified by silica gel column chromatography and HPLC. The purified compound was identified by using 1H and 13C NMR spectral data and based on the similarity index with reference compounds available in the mass spectra library of National Institute for Standards and Technology as pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl)-. The antifungal activity of the purified compound was tested against the Candida strains according to the National Committee for Clinical Laboratory Standards guidelines and it was revealed that its MIC50 value ranged from 0.78 to 2.00 μg/mL. The results of the study suggest that Streptomyces sp. VITPK9 is the potential source for diketopiperazine type of anticandidal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cowen, L.E., Singh, S.D., Kohler, J.R., Zaas, A.K., Schell, W.A., Aziz, H., et al., Proc. Natl. Acad. Sci. USA., 2009, vol. 106, no. 8, pp. 2818–2823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hube, B., Curr. Top. Med. Mycol., 1996, vol. 7, no. 1, pp. 55–69.

    CAS  PubMed  Google Scholar 

  3. Kothavade, R.J., Kura, M.M., Valand, A.G., and Pathaki, M.H., J. Med. Microbiol., 2010, vol. 59, no. 8, pp. 873–880.

    Article  CAS  PubMed  Google Scholar 

  4. Rathod, S.D., Klausner, J.D., Krupp, K., Reingold, A.L., and Mathivanan, P., Infect. Dis. Obstetrics Gynecol., Article ID 859071.

  5. Saigal, S., Bhargava, A., Mehra, S.K., and Dakwala, F., Contemp. Clin. Dent., 2011, vol. 2, no. 3, pp. 188–193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arendrup, M.C., Curr. Opinion Critical Care, 2010, vol. 16, no. 5, pp. 445–452.

    Article  Google Scholar 

  7. Georgopapadakou, N.H. and Walsh, T.J., Antimicrobial Agents Chemother., 1996, vol. 40, no. 2, pp. 279–291.

    CAS  Google Scholar 

  8. Okami, Y. and Hotta, K., Actinomycetes in Biotechnology, Goodfellow, M., Williams, S.T., and Mordarski, M., Eds., London: Academic Press, 1998.

  9. Kekuda, T.R.P., Shobha, K.S., and Onkrappa, R., J. Pharm. Res., 2010, vol. 1, no. 1, pp. 30–32.

    Google Scholar 

  10. Sanasam, S., Ningtoujam, D.S., and Asian, J., Biotechnol., 2010, vol. 2, no. 2, pp. 139–145.

    Google Scholar 

  11. Pratibha, S. and Kannabiran, K., Der Pharmacia Lettres, 2013, vol. 5, no. 3, pp. 65–70.

    Google Scholar 

  12. Engelhardlt, K., Degnes, K.F., Kemmler, M., Bredholt, H., Fjærvik, E., Klinkenberg, G., et al., Appl. Environ. Microbiol., 2010, vol. 76, no. 15, pp. 4969–4976.

    Article  Google Scholar 

  13. Sunaryanto, R. and Marwoto, B., Biodiversitas., 2010, vol. 11, no. 4, pp. 176–181.

    Article  Google Scholar 

  14. Gopal, J., Subashini, E., and Kannabiran, K., J. Korean Soc. Appl. Biol. Chem., 2013, vol. 56, pp. 361–367. DOI 10.1007/s13765-013-3052-6

    Article  CAS  Google Scholar 

  15. Saurav, K. and Kannabiran, K., Der Pharmacia Lettres, 2013, vol. 5, no. 3, pp. 178–184.

    CAS  Google Scholar 

  16. Shirling, E.B. and Gottlieb, D., Int. J. Sys. Bacteriol., 1966, vol. 16, no. 3, pp. 313–340.

    Article  Google Scholar 

  17. Dharni, S., Alam, M., Samad, A., Khan, F., Khaliq, A., Luqman, S., et al., Ind. J. Biotechnol., 2012, vol. 11, no. 4, pp. 438–444.

    Google Scholar 

  18. Chen, J.H., Lan, X.P., Liu, Y., and Jia, A.Q., Biorg. Med. Chem. Lett., 2012, vol. 22, no. 9, pp. 3177–3180.

    Article  CAS  Google Scholar 

  19. Castro, M.M., Barreiro, C., Romero, F., Chimeno, R.I.F., and Martin, J.F., Int. J. Sys. Evol., 2011, vol. 61, no. 5, pp. 1084–1088.

    Article  Google Scholar 

  20. Kazlauskas, R., Murphy, P.T., and Wells, P.J., Tetrahedron, Lett., 1978, vol. 19, no. 49, pp. 4945–4948.

    Article  Google Scholar 

  21. Niege, A.J.C., Furtado, R.V., Carlos, T., Galembeck, J.K., Bastos, N.P., and Antonio, E.M.C., J. Mass Spectrom., 2007, vol. 42, no. 10, pp. 1279–1286.

    Article  Google Scholar 

  22. Brutner, C., Binder, T., Patham-aree, W., Goodfellow, M., Bull, A.T., Potterat, O., et al., J. Antibiot., 2005, vol. 58, pp. 346–349.

    Article  Google Scholar 

  23. Xiancui, Li., Dobretsov, S., Xu, Y., Xiao, X., Hung, O.S., and Qian, P.Y., Biofouling, 2006, vol. 22, no. 3, pp. 187–194.

    Article  Google Scholar 

  24. De Rosa, S., Mitova, M., and Tommonaro, G., Biomol. Eng., 2003, vol. 20, nos. 4–6, pp. 311–316.

    Article  PubMed  Google Scholar 

  25. Tortensson. N.T.L., Arch. Microbiol., 1973, vol. 91, no. 1, pp. 11–18.

    Google Scholar 

  26. O’Reilly, E., Lestini, E., Balducci, D., and Paradisi, F., Tetrahedron, Lett., 2009, vol. 50, no. 15, pp. 11–18.

    Google Scholar 

  27. Dash, S., Jin, C., Lee, O.O., Xu, Y., and Qian, P.Y., J. Ind. Microbiol. Biotechnol., 2009, vol. 36, no. 8, pp. 1047–1056.

    Article  CAS  PubMed  Google Scholar 

  28. Devi, N.N. and Wahab, F., Int. J. Pharm. Biol. Sci., 2012, vol. 3, no. 3, pp. 420–427.

    CAS  Google Scholar 

  29. Smaoui, S., Mathieu, F., Elluech, L., Coppel, Y., and Merlina, G., Karray Rebai, I., et al., World J. Microbiol. Biotechnol., 2012, vol. 28, no. 3, pp. 793–804.

    Article  CAS  PubMed  Google Scholar 

  30. Hamza, A., Hiba Ali, A., Benjamin Clark, R., Cormac Murphy, D., and Elsheik, A., J. Biotechnol. Pharm. Res., 2013, vol. 4, no. 1, pp. 1–7.

    CAS  Google Scholar 

  31. Smaoui, S., Mellouli, L., Lebrihi, A., Coppel, Y., Fguira, L.F.B., and Mathieu, F., Nat. Prod. Res., 2011, vol. 25, no. 8, pp. 806–814.

    Article  CAS  PubMed  Google Scholar 

  32. Kamiya, T., Maeno, S., Hashimoto, M., and Mine, Y., J. Antibiot., 1972, vol. 25, no. 10, pp. 576–581.

    Article  CAS  PubMed  Google Scholar 

  33. Hirsch, S., Miroz, A., McCarthy, P., and Kashman, Y., Tetrahedron Lett., 1989, vol. 30, no. 321, pp. 4291–4294.

    Article  CAS  Google Scholar 

  34. Sanasam, S., Nimaichand, S., and Ningthoujam, D., J. Pharm. Res., 2011, vol. 4, no. 6, pp. 1707–1710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kannabiran.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjenbam, P., Vinay Gopal, J. & Kannabiran, K. Isolation and identification of anticandidal compound from Streptomyces sp. VITPK9. Appl Biochem Microbiol 50, 492–499 (2014). https://doi.org/10.1134/S0003683814050081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814050081

Keywords

Navigation