Skip to main content
Log in

Modeling the global circulation response and the regional response of the Arctic Ocean to the external forcing anomalies

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The problem of numerical modeling and analysis of the large-scale World Ocean circulation variability under variations of the external forcing is considered. A numerical model was developed in the INM RAS and is based on the primitive equations of the ocean circulation written in a spherical generalized σ-coordinate system. The model’s equations are approximated on a grid with resolution of 2.5° × 2° × 33, and the North Pole is displaced to the continental point (60°E, 60.5°N). There are two stages for the numerical experiments. The quasi-equilibrium circulation of the World Ocean under the climatological atmospheric forcing is simulated at the first stage. The run is carried out over a period of 3000 years during which a quasi-equilibrium model regime is formed. At the second stage, the sensitivity of the model ocean circulation to the atmospheric forcing perturbations in the Southern Hemisphere is studied. According to the results, the strongest regional changes in the hydrography take place in the Arctic Ocean. Substantial changes of sea’s surface height and local anomalies of the temperature and salinity are formed there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Alekseev, I. E. Frolov, and V. T. Sokolov, “Observations in the Arctic Do not Confirm the Weakening of the Thermohaline Circulation in the North Atlantic,” Dokl. Akad. Nauk 413(2), 277–280 (2007).

    Google Scholar 

  2. E. M. Volodin and N. A. Diansky, “Simulation of Climate Changes in the 20th–22nd Centuries with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(3), 291–306 (2006) [Izv., Atmos. Ocean. Phys. 42 (3), 267–281 (2006)].

    Google Scholar 

  3. V. B. Zalesny and V. O. Ivchenko, “Influence of Anomalous Regimes in the Southern Ocean on Equatorial Dynamics,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41(3), 341–359 (2005) [Izv., Atmos. Ocean. Phys. 41 (3), 308–324 (2005)].

    Google Scholar 

  4. V. M. Koshlyakov, A. A. Romanov, and Yu. A. Romanov, “El Niño-Southern Oscillation and the Iceberg Distribution in the Pacific Sector of the Antarctic,” Okeanologiya 38(4), 485–495 (1998) [Oceanology 38 (4), 437–446 (1998)].

    Google Scholar 

  5. G. I. Marchuk, Methods of Numerical Mathematics, 2nd ed. (Nauka, Moscow, 1980; Springer, New York, 1975).

    Google Scholar 

  6. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  7. A. S. Sarkisyan, Numerical Analysis and Forecast of Marine Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  8. E. V. Semenov, “Numerical Modeling of White Sea Dynamics and Monitoring Problem,” Izv. RAN. Fiz. Atm. I Okeana 40(1), 128–141 (2004) [Izv., Atmos. Ocean. Phys. 40 (1), 114–126 (2004)].

    Google Scholar 

  9. E. V. Semenov, “Status and Development of Hydrodynamic Models of the Ocean,” Fundam. Prikl. Gidrofiz., No. 1, 12–28 (2008).

  10. N. G. Yakovlev, “Coupled Model of Ocean General Circulation and Sea Ice Evolution in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39(3), 394–409 (2003) [Izv., Atmos. Ocean. Phys. 39 (3), 355–368 (2003)].

    Google Scholar 

  11. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “A Numerical Algorithm of Variational Data Assimilation for Reconstruction of Salinity Fluxes on the Ocean Surface,” Russ. J. Numer. Anal. Math. Modeling 23(2), 135–161 (2008).

    Article  Google Scholar 

  12. A. T. Blaker, B. Sinha, V. O. Ivchenko, et al., “Identifying Roles of the Ocean and Atmosphere in the Creating a Rapid Equatorial Response to a Perturbation in the Southern Ocean,” Geophys. Rev. Lett. 33, L06720, doi: 10.1029/2005GL025474 (2006).

    Article  Google Scholar 

  13. F. Castruccio, J. Verron, L. Gourdeau, et al., “Joint Altimetric and In-Situ Data Assimilation Using the GRACE Mean Dynamic Topography: A 1993–1998 Hindcast Experiment in the Tropical Pacific Ocean,” Ocean Dynamics 58, 43–63 (2008).

    Article  Google Scholar 

  14. S. M. Griffies, Ocean Weather Forecasting: An Integrated View of Oceanography, Ed. by E. P. Chassignet and J. Verron (Springer, Berlin, Germany, 2005), pp. 19–74.

    Google Scholar 

  15. S. M. Griffies, M. Winton, and B. L. Samuels, The Large and Yeager (2004) Dataset and CORE, NOAA Geophysical Fluid Dynamics Laboratory PO Box 308, Forrestal Campus, 08542 USA, Princeton, New Jersey (2004).

  16. V. O. Ivchenko, V. B. Zalesny, and M. R. Drinkwater, “Can the Equatorial Ocean Quickly Respond to Antarctic Sea Ice/Salinity Anomalies?,” Geophys. Rev. Lett. 31, L15310, doi: 10.1029/2004 GL020472 (2004).

    Article  Google Scholar 

  17. V. O. Ivchenko, V. B. Zalesny, M. Drinkwater, and J. Schroeter, “A Quick Response of the Equatorial Ocean to Antarctic Sea Ice/Salinity Anomalies,” J. Geophys. Res. 111, C10018, doi: 10.1029/2005JC003061 (2006).

    Article  Google Scholar 

  18. R. Kwok and J. C. Comiso, “Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation,” J. Clim. 15, 487–501 (2002).

    Article  Google Scholar 

  19. S. Levitus, T. P. Boyer, M. E. Conkright, et al., World Ocean Database 1998, NOAA Atlas NESDIS 18 (1998).

  20. G. I. Marchuk, J. Schroeter, and V. B. Zalesny, “Numerical Study of the Global Ocean Equilibrium Circulation,” Russ. J. Numer. Anal. Math. Modelling 18(4), 307–335 (2003).

    Article  Google Scholar 

  21. S. N. Moshonkin, A. V. Bagno, A. V. Gusev, and N. A. Diansky, “Numerical Modelling of Oceanic Circulation and Sea Ice in the North Atlantic-Arctic Ocean-Bering Sea Region,” Russ. J. Numer. Anal. Math. Modelling 21(4), 421–443 (2006).

    Google Scholar 

  22. R. G. Peterson and W. B. White, “Slow Teleconnections Linking the Antarctic Circumpolar Wave with the Tropical El Niño-Southern Oscillation,” J. Geophys. Res. 103(C11), 24573–24583 (1998).

    Article  Google Scholar 

  23. G. M. Reznik and V. Zeitlin, “Resonant Exitation of Coastal Kelvin Waves by Inertia-Gravity Waves,” Physics Letters. A, doi: 10.1016/J.physleta.2009.01.040.

  24. V. B. Zalesny and A. V. Gusev, “Mathematical Model of the World Ocean Dynamics with Temperature and Salinity Variational Data Assimilation Algorithms,” Russ. J. Numer. Anal. Math. Modelling 24(2), 171–191 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Zalesny.

Additional information

Original Russian Text © V.B. Zalesny, V.O. Ivchenko, 2010, published in Okeanologiya, 2010, Vol. 50, No. 6, pp. 877–889.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalesny, V.B., Ivchenko, V.O. Modeling the global circulation response and the regional response of the Arctic Ocean to the external forcing anomalies. Oceanology 50, 829–840 (2010). https://doi.org/10.1134/S0001437010060020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437010060020

Keywords

Navigation