Skip to main content
Log in

On the lipschitz property of a class of mappings

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Open discrete annular Q-mappings with respect to the p-modulus in ℝn, n ≥ 2, are considered in this paper. It is established that such mappings are finite Lipschitz for n − 1 < p < n if the integral mean value of the function Q(x) over all infinitesimal balls B(x 0, ɛ) is finite everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1971), Vol. 229.

  2. F. W. Gehring, “Lipschitz mappings and the p-capacity of ring in n-space,” in Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. (Princeton Univ. Press, Princeton, NJ, 1971), Vol. 66, pp. 175–193.

    Google Scholar 

  3. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, in Springer Monogr. Math. (Springer, New York, 2009).

    MATH  Google Scholar 

  4. R. R. Salimov, “Absolute continuity on lines and the differentiability of a generalization quasiconformal mappings,” Izv. Ross. Akad. Nauk Ser. Mat. 72(5), 141–148 (2008) [Izv. Math. 72 (5), 977–984 (2008)].

    Article  MathSciNet  Google Scholar 

  5. A. Golberg, “Differential properties of (α,Q)-homeomorphisms,” in Further, Progress in Analysis (World Sci. Publ., Hackensack, NJ, 2009), pp. 218–228.

    Google Scholar 

  6. A. Golberg, “Integrally quasiconformal mappings in space,” Zb. Prats. Inst. Mat. (National Academy of Sciences of Ukraine) 7(2), 53–64 (2010).

    MathSciNet  MATH  Google Scholar 

  7. Ch. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci. 2003(22), 1397–1420 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. M. Miklyukov, Conformal Mapping a Nonregular Surface and Its Application (Izd. VolGU, Volgograd, 2005) [in Russian].

    Google Scholar 

  9. Yu. F. Strugov, “On the compactness of families of mappings that are quasi-conformal in the mean,” Dokl. Akad. Nauk SSSR 243(4), 859–861 (1978) [Soviet Math. Dokl. 243 (4), 1443–1446 (1978)].

    MathSciNet  Google Scholar 

  10. R. R. Salimov and E. A. Sevost’yanov, “The theory of shell-based Q-mappings in geometric function theory,” Mat. Sb. 201(6), 131–158 (2010) [Sb. Math. 201 (6), 909–934 (2010)].

    Article  MathSciNet  Google Scholar 

  11. S. Saks, Theory of the Integral (USA, 1939; Inostr. Lit., Moscow, 1949).

    Google Scholar 

  12. R. R. Salimov, “On finitely Lipschitz space mappings,” Sib. Élektron. Mat. Izv. 8, 284–295 (2011).

    MathSciNet  Google Scholar 

  13. R. R. Salimov, “The local behaviour of generalized quasiisometries,” Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, No. 6, 23–28 (2011).

    Google Scholar 

  14. S. Rickman, Quasiregular Mappings, in Ergeb. Math. Grenzgeb. (3) (Springer-Verlag, Berlin, 1993), Vol. 26.

    Google Scholar 

  15. O. Martio, S. Rickman, and J. Väisälä, “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A I 448 (1969).

  16. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  17. V.G. Maz’ya, “Classes of domains, measures and capacities in the theory of spaces of differentiable functions. (Russian) in Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya Vol. 26: Analysis III. Spaces of Differentiable Functions (VINITI, Moscow, 1988), pp. 159–228 [Encycl. Math. Sci. 26, 141–211 (1991)].

    Google Scholar 

  18. V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean,” Mat. Sb. 130 (172)(2 (6)), 185–206 (1986) [Math. USSR-Sb. 58, 185–205 (1987)].

    MathSciNet  Google Scholar 

  19. G. T. Whyburn, Analytic Topology, in Amer. Math. Soc. Colloq. Publ. (Amer. Math. Soc., New York, 1942), Vol. 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Salimov.

Additional information

Original Russian Text © R. R. Salimov, 2013, published in Matematicheskie Zametki, 2013, Vol. 94, No. 4, pp. 591–599.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimov, R.R. On the lipschitz property of a class of mappings. Math Notes 94, 559–566 (2013). https://doi.org/10.1134/S0001434613090265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434613090265

Keywords

Navigation