Skip to main content
Log in

Hausdorff measures and Lebesgue points for the Sobolev classes W p α , α > 0, on spaces of homogeneous type

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Suppose that (X, µ, d) is a space of homogeneous type, where d is themetric and µ is the measure related by the doubling condition with exponent γ > 0, W p α (X), p > 1, are the generalized Sobolev classes, α > 0, and dimH is the Hausdorff dimension. We prove that, for any function uW p α (X), p > 1, 0 < α < γ/p, there exists a set EX such that dimH(E) ≤ γαp and, for any xXE, the limit

$$ \mathop {\lim }\limits_{r \to + 0} \frac{1} {{\mu (B(x,r))}}\int_{B(x,r)} {ud\mu = u^ * (x)} $$

exists; moreover,

$$ \mathop {\lim }\limits_{r \to + 0} \frac{1} {{\mu (B(x,r))}}\int_{B(x,r)} {|u - u^ * (x)|^q d\mu = 0,} \frac{1} {q} = \frac{1} {p} - \frac{\alpha } {\gamma }. $$

. For α = 1, a similar result was obtained earlier by Hajłasz and Kinnunen in 1998. The case 0 < α ≤ 1 was studied by the author in 2007; in the proof, the structures of the corresponding capacities were significantly used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hajłasz, “Sobolev spaces on an arbitrary metric space,” Potential Anal. 5(4), 403–415 (1996).

    MATH  MathSciNet  Google Scholar 

  2. D. Yang, “New characterization of Hajłasz-Sobolev spaces on metric spaces,” Sci. China Ser. A 46(5), 675–689 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. I. A. Ivanishko, “Generalized Sobolev classes on metric measure spaces,” Mat. Zametki 77(6), 937–941 (2005) [Math. Notes 77 (5–6), 865–869 (2005)].

    MathSciNet  Google Scholar 

  4. P. Hajłasz and J. Kinnunen, “Hölder quasicontinuity of Sobolev functions on metric spaces,” Rev. Mat. Iberoamericana 14(3), 601–622 (1998).

    MATH  MathSciNet  Google Scholar 

  5. M. A. Prokhorovich, “The Hausdorff dimension of the Lebesgue set for the classes W p α on metric spaces,” Mat. Zametki 82(1), 99–107 (2007) [Math. Notes 82 (1–2), 88–95 (2007)].

    MathSciNet  Google Scholar 

  6. A. Jonsson, “Haar wavelets of higher order on fractals and regularity of functions,” J. Math. Anal. Appl. 290(1), 86–104 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. R. R. Coifman and G. Weiss, “Extensions of Hardy spaces and their use in analysis,” Bull. Amer.Math. Soc. 83(4), 569–645 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions,” Studia Math. 44, 563–582 (1972).

    MATH  MathSciNet  Google Scholar 

  9. H. Federer,GeometricMeasure Theory (Springer-Verlag, Berlin-New York, 1978; Nauka,Moscow, 1987).

  10. H. Federer and W. P. Ziemer, “The Lebesgue sets of a function whose distribution derivatives are pth power summable,” Indiana Univ. Math. J. 22(1), 139–158 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  11. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin-Heidelberg-New York, 1996), Vol. 314.

    Google Scholar 

  12. J. Kinnunen and V. Latvala, “Lebesgue points for Sobolev functions on metric spaces,” Rev. Mat. Iberoamericana 18(3), 685–700 (2002).

    MATH  MathSciNet  Google Scholar 

  13. M. A. Prokhorovich, “Capacities and Lebesgue points for Hajlasz-Sobolev fractional classes on metric measure spaces,” Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk, No. 1, 19–23 (2006).

  14. I. A. Ivanishko and V. G. Krotov, “The generalized Poincaré-Sobolev inequality on metric measure spaces,” Trudy Inst. Mat. Nats. Akad. Navuk Belarusi 14(1), 51–61 (2006).

    Google Scholar 

  15. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, in Princeton Math. Ser. (Princeton Univ. Press, Princeton, NJ, 1993), Vol. 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Prokhorovich.

Additional information

Original Russian Text © M. A. Prokhorovich, 2009, published in Matematicheskie Zametki, 2009, Vol. 85, No. 4, pp. 616–621.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorovich, M.A. Hausdorff measures and Lebesgue points for the Sobolev classes W p α , α > 0, on spaces of homogeneous type. Math Notes 85, 584–589 (2009). https://doi.org/10.1134/S0001434609030298

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434609030298

Key words

Navigation