Skip to main content
Log in

Influence of Thermal Air Pollution on the Urban Climate (Estimates Using the COSMO-CLM Model)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

It is well known that large cities and urban agglomerations not only make a decisive contribution to the growth of greenhouse gases in the atmosphere, but also significantly shape their own climate by transforming the underlying surface of urban areas, as well as thermal, gas and aerosol pollution of the urban boundary layer of the atmosphere. The most powerful manifestation of the city’s influence on local and regional climate processes is the thermal pollution of the atmosphere created by anthropogenic heat fluxes forming primarily due to the energy consumption of the urban economy. This paper summarizes the results of the work of the authors on numerical modeling of the influence of anthropogenic heat fluxes (thermal pollution of the urban atmosphere) on the climatic characteristics of urban agglomerations using the COSMO-CLM mesoscale climate model. The work was carried out as part of the Analysis of an impact of the regional climate change on the residential and commercial energy consumption of Russian megacities project of the Russian Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. H. E. Landsberg, The Urban Climate (Academic, New York, 1981; GIMIZ, Leningrad, 1983).

  2. A. Kratzer, Das Stadtklima (F. Vieweg und Sohn, Braunschweig, 1937; Inostrannaya literatura, Moscow, 1958).

  3. T. R. Oke and C. East, “The urban boundary layer in Montreal,” Boundary-Layer Meteorol. 1, 411–437 (1971).

    Article  Google Scholar 

  4. T. R. Oke, G. Mills, A. Christen, and J. A. Voogt, Urban Climates (Cambridge University Press, Cambridge, 2017).

    Book  Google Scholar 

  5. W. W. Kellogg, “Predicting the climate,” in Man’s Impact on the Climate (MIT Press, Cambridge, Mass., 1971), pp. 123–132.

    Google Scholar 

  6. E. N. Kadygrov, I. N. Kuznetsova, and G. S. Golitsyn, “A heat island in the atmospheric boundary layer over a large city: New results from remote sensing data,” Dokl. Earth Sci. 385 (4), 541–548 (2002).

    Google Scholar 

  7. P. J. Crutzen, “New directions: The growing urban heat and pollution ‘island’ effect—impact on chemistry and climate,” Atmos. Environ. 38, 3539–3540 (2004).

    Article  Google Scholar 

  8. S. Chapman, J. E. M. Watson, A. Salazar, M. Thatcher, and C. A. McAlpine, “The impact of urbanization and climate change on urban temperatures: A systematic review,” Landscape Ecol. 32, 1921–1935 (2017).

    Article  Google Scholar 

  9. A. S. Ginzburg and P. F. Demchenko, “Anthropogenic meso-meteorological feedbacks: A review of a recent research,” Izv., Atmos. Ocean. Phys. 55 (6), 573–590 (2019).

    Article  Google Scholar 

  10. http://www.cosmo-model.org/content/model/documentation/core/default.htm.

  11. H. Wouters, M. Demuzere, U. Blahak, et al., “The efficient urban canopy dependency parametrization (SURY) V1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer,” Geosci. Model Dev. 9, 3027–3054 (2016).

    Article  Google Scholar 

  12. B. Vogel, H. Vogel, D. Baumer, et al., “The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale,” Atmos. Chem. Phys. 9, 8661–8680 (2009).

    Article  Google Scholar 

  13. H. Wouters, M. Varentsov, U. Blahak, et al., User guide for TERRA_URB v.2.2: The urban-canopy land-surface scheme of the COSMO model, Tech. Rep., 2017. https://doi.org/10.13140/RG.2.2.33691.87847/1

  14. Analysis and Evaluation of TERRA URB Scheme, COSMO Tech. Rep. No. 40, 2019. https://doi.org/10.5676/DWD pub/nwv/cosmo-tr_40

  15. H. Wouters, M. Demuzere, K. de Ridder, and N. van Lipzig, “The impact of impervious water-storage parametrization on urban climate modelling,” Urban Clim. 11, 24–50 (2015).

    Article  Google Scholar 

  16. The Climate of Moscow under Global Warming Conditions, Ed. by A. V. Kislova (Mos. Univ., Moscow, 2017) [in Russian].

    Google Scholar 

  17. M. Varentsov, H. Wouters, V. Platonov, and P. Konstantinov, “Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia,” Atmosphere 9, 50 (2018). https://doi.org/10.3390/atmos9020050

    Article  Google Scholar 

  18. M. Varentsov, P. Konstantinov, A. Baklanov, I. Esau, V. Miles, and R. Davy, “Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city,” Atmos. Chem. Phys. 18, 17573–17587 (2018).

    Article  Google Scholar 

  19. G. G. Alexandrov, I. N. Belova, M. I. Varentsov, and S. A. Dokukin, “Impacts of climate change on energy consumption of Russian cities in the winter period,” in Proc. SPIE 10466, 23rd Int. Symp. Atmos. Ocean Opt.: Atmos. Phys., (Irkutsk, 2017), 104666K. https://doi.org/10.1117/12.2287766

  20. A. S. Ginzburg and S. A. Dokukin, “Numerical modeling of anthropogenic heat flux impact on air temperature in Moscow in wintertime,” IOP Conf. Ser.: Earth Environ. Sci. 211, 012019 (2018). https://doi.org/10.1088/1755-1315/211/1/012019

  21. A. S. Ginzburg and S. A. Dokukin, “Anthropogenic heat fluxes in urban agglomerations and their impact on meteorological processes,” IOP Conf. Ser.: Earth Environ. Sci. 386, 012049 (2019). https://doi.org/10.1088/1755-1315/386/1/012049

  22. S. A. Dokukin and A. S. Ginzburg, “The influence of anthropogenic heat fluxes on the temperature and wind regimes of the Moscow and St. Petersburg regions,” IOP Conf. Ser.: Earth Environ. Sci. 606, 012010 (2020).

  23. T. R. Oke, “The energetic basis of the urban heat island,” Q. J. R. Meteorol. Soc. 108 (455), 1–24 (1982).

    Google Scholar 

  24. A. S. Ginzburg, I. N. Belova, and N. V. Raspletina, “Anthropogenic heat fluxes in urban agglomerations,” Dokl. Earth Sci. 439 (1), 1006–1009 (2011).

    Article  Google Scholar 

  25. G. G. Aleksandrov, I. N. Belova, and A. S. Ginzburg, “Anthropogenic heat flows in the capital agglomerations of Russia and China,” Dokl. Earth Sci. 457 (1), 850–854 (2014).

    Article  Google Scholar 

  26. S. H. Lee, S. A. McKeen, and D. J. Sailor, “A regression approach for estimation of anthropogenic heat flux based on a bottom–up air pollutant emission database,” Atmos. Environ. 95, 629–633 (2014).

    Article  Google Scholar 

  27. D. J. Sailor, “A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment,” Int. J. Climatol. 31, 189–199 (2011).

    Article  Google Scholar 

  28. L. Allen, F. Lindberg, and C. S. B. Grimmond, “Global city scale urban anthropogenic heat flux: Model and variability,” Int. J. Climatol. 31, 1990–2005 (2011).

    Article  Google Scholar 

  29. A. Block, K. Keuler, and E. Schaller, “Impacts of anthropogenic heat on regional climate patterns,” Geophys. Res. Lett. 31, L12211 (2004).

    Article  Google Scholar 

  30. A. Ginzburg and N. Raspletina, “Anthropogenic heat fluxes estimation for metropolitan areas and urban regions,” EGU General Assembly (Vienna, 2008), Geophys. Res. Abstr. 10, A-02526 (2008).

    Google Scholar 

  31. M. G. Flanner, “Integrating anthropogenic heat flux with global climate models,” Geophys. Res. Lett. 36, L02801 (2009).

    Article  Google Scholar 

  32. I. I. Mokhov “Link of intensity of heat-island effect of a city with its size and population,” Dokl. Earth Sci. 427 (4), 997–1000 (2009).

    Article  Google Scholar 

  33. The Little Green Data Book (World Bank, Washington, DC, 2017). Doi https://doi.org/10.1596/978-1-4648-1034-3

  34. http://www.cgd.ucar.edu/tss/ahf/data.

  35. https://tools.clm-community.eu/web_pep/gui/web_ pep.php.

  36. P. Markowski and Y. Richardson, Mesoscale Meteorology in Midlatitudes (Wiley-Blackwell, 2010).

    Book  Google Scholar 

  37. M. G. H. Ligda, “Radar storm observations,” in Compendium of Meteorology (Am. Meteorol. Soc., Boston, 1951), pp. 1265–1282.

    Google Scholar 

  38. I. Orlanski, “A rational subdivision of scales for atmospheric processes,” Bull. Am. Meteorol. Soc. 56 (5), 527–530 (1975).

    Article  Google Scholar 

  39. P. Thunis and R. Bornstein, “Hierarchy of mesoscale flow assumptions and equations,” J. Atmos. Sci. 53, 380–397 (1996).

    Article  Google Scholar 

  40. J. Murphy, “An evaluation of statistical and dynamical techniques for downscaling local climate,” J. Clim. 12 (8), 2256–2284 (1999).

    Article  Google Scholar 

  41. D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  42. http://www.cosmo-model.org/content/model/documentation/core/int2lm_2.05.pdf.

  43. http://www.cosmo-model.org/content/tasks/workGroups/wg3b/default.htm#EXTPAR.

  44. T. Ichinose, K. Shimodozono, and K. Hanaki, “Impact of anthropogenic heat on urban climate in Tokyo,” Atmos. Environ. 33, 3897–3909 (1999).

    Article  Google Scholar 

  45. J.-M. Feng, Y.-I. Wang, Z.-J. Ma, and Y.-H. Liu, “Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China,” J. Clim 2012, 7187–7203 (2012).

    Article  Google Scholar 

  46. K. S. Wang, J. Jiang, C. Wang, X. Zhou, X. Wang, and X. Lee, “Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing meteorological network,” J. Geophys. Res.: Atmos. 122, 2131–2154 (2017).

    Article  Google Scholar 

  47. Y. H. Ryu, J. J. Baik, and S. H. Lee, “Effects of anthropogenic heat on ozone air quality in a megacity,” Atmos. Environ. 80, 20–30 (2013).

    Article  Google Scholar 

  48. S. H. Lee, C. K. Song, J. J. Baik, and S. U. Park, “Estimation of anthropogenic heat emission in the Gyeong-In region of Korea,” Theor. Appl. Climatol. 96, 291–303 (2009). https://doi.org/10.1007/s00704-008-0040-6

    Article  Google Scholar 

  49. V. V. Klimenko, A. S. Ginzburg, P. F. Demchenko, A. G. Tereshin, I. N. Belova, and E. V. Kasilova, “Impact of urbanization and climate warming on energy consumption in large cities,” Dokl. Earth Sci. 470 (5), 521–525 (2016).

    Google Scholar 

  50. A. S. Ginzburg, O. A. Reshetar, and I. N. Belova, “Impact of climatic factors on energy consumption during the heating season,” Therm. Eng. 63 (9), 621–627 (2016).

    Article  Google Scholar 

  51. G. G. Alexandrov and A. S. Ginzburg, “Anthropogenic impact of Moscow district heating system on urban environment,” Energy Procedia, 149, 161–169 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-17-00114 (numerical modeling and analysis of calculation results), and the Russian Foundation for Basic Research, project no. 20-05-00254 (description and comparison of mesoscale climate models).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ginzburg.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, A.S., Dokukin, S.A. Influence of Thermal Air Pollution on the Urban Climate (Estimates Using the COSMO-CLM Model). Izv. Atmos. Ocean. Phys. 57, 47–59 (2021). https://doi.org/10.1134/S0001433821010059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821010059

Keywords:

Navigation